Mouse methylome studies SRP407097 Track Settings
 
Sex Chromosomes and Sex Phenotype Contribute to Biased DNA Methylation in Mouse Liver [Liver]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX18227479 
SRX18227480 
SRX18227481 
SRX18227482 
SRX18227483 
SRX18227484 
SRX18227485 
SRX18227486 
SRX18227487 
SRX18227488 
SRX18227489 
SRX18227490 
SRX18227491 
SRX18227492 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX18227479  HMR  Liver / SRX18227479 (HMR)   Data format 
hide
 Configure
 SRX18227479  CpG methylation  Liver / SRX18227479 (CpG methylation)   Data format 
hide
 SRX18227480  HMR  Liver / SRX18227480 (HMR)   Data format 
hide
 Configure
 SRX18227480  CpG methylation  Liver / SRX18227480 (CpG methylation)   Data format 
hide
 SRX18227481  HMR  Liver / SRX18227481 (HMR)   Data format 
hide
 Configure
 SRX18227481  CpG methylation  Liver / SRX18227481 (CpG methylation)   Data format 
hide
 SRX18227482  HMR  Liver / SRX18227482 (HMR)   Data format 
hide
 Configure
 SRX18227482  CpG methylation  Liver / SRX18227482 (CpG methylation)   Data format 
hide
 SRX18227483  HMR  Liver / SRX18227483 (HMR)   Data format 
hide
 Configure
 SRX18227483  CpG methylation  Liver / SRX18227483 (CpG methylation)   Data format 
hide
 SRX18227484  HMR  Liver / SRX18227484 (HMR)   Data format 
hide
 Configure
 SRX18227484  CpG methylation  Liver / SRX18227484 (CpG methylation)   Data format 
hide
 SRX18227485  HMR  Liver / SRX18227485 (HMR)   Data format 
hide
 Configure
 SRX18227485  CpG methylation  Liver / SRX18227485 (CpG methylation)   Data format 
hide
 SRX18227486  HMR  Liver / SRX18227486 (HMR)   Data format 
hide
 Configure
 SRX18227486  CpG methylation  Liver / SRX18227486 (CpG methylation)   Data format 
hide
 SRX18227487  HMR  Liver / SRX18227487 (HMR)   Data format 
hide
 Configure
 SRX18227487  CpG methylation  Liver / SRX18227487 (CpG methylation)   Data format 
hide
 SRX18227488  HMR  Liver / SRX18227488 (HMR)   Data format 
hide
 Configure
 SRX18227488  CpG methylation  Liver / SRX18227488 (CpG methylation)   Data format 
hide
 SRX18227489  HMR  Liver / SRX18227489 (HMR)   Data format 
hide
 Configure
 SRX18227489  CpG methylation  Liver / SRX18227489 (CpG methylation)   Data format 
hide
 SRX18227490  HMR  Liver / SRX18227490 (HMR)   Data format 
hide
 Configure
 SRX18227490  CpG methylation  Liver / SRX18227490 (CpG methylation)   Data format 
hide
 SRX18227491  HMR  Liver / SRX18227491 (HMR)   Data format 
hide
 Configure
 SRX18227491  CpG methylation  Liver / SRX18227491 (CpG methylation)   Data format 
hide
 SRX18227492  HMR  Liver / SRX18227492 (HMR)   Data format 
hide
 Configure
 SRX18227492  CpG methylation  Liver / SRX18227492 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Sex Chromosomes and Sex Phenotype Contribute to Biased DNA Methylation in Mouse Liver
SRA: SRP407097
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX18227479 Liver 0.733 27.5 44436 1100.2 4166 798.6 3661 9663.8 0.984 GSM6724132: XO1 female; Mus musculus; Bisulfite-Seq
SRX18227480 Liver 0.733 26.2 58207 1039.1 1482 850.7 3524 10097.2 0.987 GSM6724133: XO2 female; Mus musculus; Bisulfite-Seq
SRX18227481 Liver 0.741 22.6 54083 1064.2 1032 1268.8 3349 10410.1 0.986 GSM6724134: XO3 female; Mus musculus; Bisulfite-Seq
SRX18227482 Liver 0.740 26.4 44121 1124.1 3408 835.8 3316 9147.9 0.984 GSM6724135: XXPaf4 female; Mus musculus; Bisulfite-Seq
SRX18227483 Liver 0.737 25.9 46994 1126.1 3498 839.4 3526 8962.3 0.984 GSM6724136: XXPaf6 female; Mus musculus; Bisulfite-Seq
SRX18227484 Liver 0.748 21.6 44017 1157.3 2370 831.9 3621 8885.1 0.983 GSM6724137: XX7 female; Mus musculus; Bisulfite-Seq
SRX18227485 Liver 0.731 27.0 45740 1108.2 3523 826.8 3715 8388.3 0.984 GSM6724138: XX8 female; Mus musculus; Bisulfite-Seq
SRX18227486 Liver 0.738 23.9 45570 1121.5 2869 835.4 3612 8625.7 0.984 GSM6724139: XX9 female; Mus musculus; Bisulfite-Seq
SRX18227487 Liver 0.740 26.8 46978 1140.9 2692 798.1 3893 14939.4 0.984 GSM6724140: XY10 male; Mus musculus; Bisulfite-Seq
SRX18227488 Liver 0.741 22.7 42810 1167.5 2201 801.1 3427 15268.3 0.983 GSM6724141: XY11 male; Mus musculus; Bisulfite-Seq
SRX18227489 Liver 0.740 22.7 43406 1165.9 2311 785.9 3698 14443.7 0.983 GSM6724142: XY12 male; Mus musculus; Bisulfite-Seq
SRX18227490 Liver 0.740 27.5 48298 1144.1 3564 801.9 3892 15030.6 0.984 GSM6724143: XY1 female; Mus musculus; Bisulfite-Seq
SRX18227491 Liver 0.732 28.7 50757 1122.3 3433 809.2 4158 14436.0 0.985 GSM6724144: XY2 female; Mus musculus; Bisulfite-Seq
SRX18227492 Liver 0.748 22.7 42554 1168.5 2007 788.7 3667 14697.1 0.983 GSM6724145: XY3 female; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.