Mouse methylome studies SRP282002 Track Settings
 
Sperm epigenetic alterations contribute to inter- and transgenerational effects of paternal exposure to long-term psychological stress via evading offspring embryonic reprogramming [Embryo, Sperm]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX12557483 
SRX12557486 
SRX12557489 
SRX12557492 
SRX12557495 
SRX9105158 
SRX9105159 
SRX9105160 
SRX9105161 
SRX9105162 
SRX9105163 
SRX9105164 
SRX9105165 
SRX9105167 
SRX9105168 
SRX9105169 
SRX9105170 
SRX9105171 
SRX9105172 
SRX9105173 
SRX9105174 
SRX9105175 
experiment
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 Configure
 SRX12557483  CpG methylation  Embryo / SRX12557483 (CpG methylation)   Data format 
hide
 Configure
 SRX12557486  CpG methylation  Embryo / SRX12557486 (CpG methylation)   Data format 
hide
 Configure
 SRX12557489  CpG methylation  Embryo / SRX12557489 (CpG methylation)   Data format 
hide
 Configure
 SRX12557492  CpG methylation  Embryo / SRX12557492 (CpG methylation)   Data format 
hide
 Configure
 SRX12557495  CpG methylation  Embryo / SRX12557495 (CpG methylation)   Data format 
hide
 SRX9105158  HMR  Sperm / SRX9105158 (HMR)   Data format 
hide
 Configure
 SRX9105158  CpG methylation  Sperm / SRX9105158 (CpG methylation)   Data format 
hide
 SRX9105159  HMR  Sperm / SRX9105159 (HMR)   Data format 
hide
 Configure
 SRX9105159  CpG methylation  Sperm / SRX9105159 (CpG methylation)   Data format 
hide
 SRX9105160  HMR  Sperm / SRX9105160 (HMR)   Data format 
hide
 Configure
 SRX9105160  CpG methylation  Sperm / SRX9105160 (CpG methylation)   Data format 
hide
 SRX9105161  HMR  Sperm / SRX9105161 (HMR)   Data format 
hide
 Configure
 SRX9105161  CpG methylation  Sperm / SRX9105161 (CpG methylation)   Data format 
hide
 SRX9105162  HMR  Sperm / SRX9105162 (HMR)   Data format 
hide
 Configure
 SRX9105162  CpG methylation  Sperm / SRX9105162 (CpG methylation)   Data format 
hide
 SRX9105163  HMR  Sperm / SRX9105163 (HMR)   Data format 
hide
 Configure
 SRX9105163  CpG methylation  Sperm / SRX9105163 (CpG methylation)   Data format 
hide
 SRX9105164  HMR  Sperm / SRX9105164 (HMR)   Data format 
hide
 Configure
 SRX9105164  CpG methylation  Sperm / SRX9105164 (CpG methylation)   Data format 
hide
 SRX9105165  HMR  Sperm / SRX9105165 (HMR)   Data format 
hide
 Configure
 SRX9105165  CpG methylation  Sperm / SRX9105165 (CpG methylation)   Data format 
hide
 SRX9105167  HMR  Sperm / SRX9105167 (HMR)   Data format 
hide
 Configure
 SRX9105167  CpG methylation  Sperm / SRX9105167 (CpG methylation)   Data format 
hide
 SRX9105168  HMR  Sperm / SRX9105168 (HMR)   Data format 
hide
 Configure
 SRX9105168  CpG methylation  Sperm / SRX9105168 (CpG methylation)   Data format 
hide
 SRX9105169  HMR  Sperm / SRX9105169 (HMR)   Data format 
hide
 Configure
 SRX9105169  CpG methylation  Sperm / SRX9105169 (CpG methylation)   Data format 
hide
 SRX9105170  HMR  Sperm / SRX9105170 (HMR)   Data format 
hide
 Configure
 SRX9105170  CpG methylation  Sperm / SRX9105170 (CpG methylation)   Data format 
hide
 SRX9105171  HMR  Sperm / SRX9105171 (HMR)   Data format 
hide
 Configure
 SRX9105171  CpG methylation  Sperm / SRX9105171 (CpG methylation)   Data format 
hide
 SRX9105172  HMR  Sperm / SRX9105172 (HMR)   Data format 
hide
 Configure
 SRX9105172  CpG methylation  Sperm / SRX9105172 (CpG methylation)   Data format 
hide
 SRX9105173  HMR  Sperm / SRX9105173 (HMR)   Data format 
hide
 Configure
 SRX9105173  CpG methylation  Sperm / SRX9105173 (CpG methylation)   Data format 
hide
 SRX9105174  HMR  Sperm / SRX9105174 (HMR)   Data format 
hide
 Configure
 SRX9105174  CpG methylation  Sperm / SRX9105174 (CpG methylation)   Data format 
hide
 SRX9105175  HMR  Sperm / SRX9105175 (HMR)   Data format 
hide
 Configure
 SRX9105175  CpG methylation  Sperm / SRX9105175 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Sperm epigenetic alterations contribute to inter- and transgenerational effects of paternal exposure to long-term psychological stress via evading offspring embryonic reprogramming
SRA: SRP282002
GEO: GSE185579
Pubmed: 34711814

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX12557483 Embryo 0.267 2.7 0 0.0 424 950.5 31 975022.3 0.962 WGBS of mus musculus: E3.5 embryos
SRX12557486 Embryo 0.074 2.1 0 0.0 10 2383.7 6 12074217.5 0.946 WGBS of mus musculus: E13.5 embryos
SRX12557489 Embryo 0.201 2.1 1 795486.0 53 1015.6 2 108071439.5 0.936 WGBS of mus musculus: E3.5 embryos
SRX12557492 Embryo 0.212 2.7 0 0.0 210 873.8 1 143849167.0 0.927 WGBS of mus musculus: E3.5 embryos
SRX12557495 Embryo 0.200 1.9 5 588228.0 23 1120.9 0 0.0 0.951 WGBS of mus musculus: E3.5 embryos
SRX9105158 Sperm 0.816 28.3 81504 2418.7 6731 885.6 4796 54431.3 0.994 WGBS of mus musculus: adult male sperm
SRX9105159 Sperm 0.809 24.4 77541 2314.1 6424 861.6 4518 51256.7 0.996 WGBS of mus musculus: adult male sperm
SRX9105160 Sperm 0.813 25.6 78765 2354.7 7346 878.7 4476 54302.9 0.994 WGBS of mus musculus: adult male sperm
SRX9105161 Sperm 0.813 28.1 80264 2484.4 6370 882.5 4541 58818.9 0.994 WGBS of mus musculus: adult male sperm
SRX9105162 Sperm 0.804 20.7 74013 1727.9 6075 875.4 3869 44665.1 0.995 WGBS of mus musculus: adult male sperm
SRX9105163 Sperm 0.793 19.5 75336 1785.2 5886 864.5 3649 50653.2 0.995 WGBS of mus musculus: adult male sperm
SRX9105164 Sperm 0.793 21.0 79808 1817.1 5290 872.0 4170 49672.9 0.994 WGBS of mus musculus: adult male sperm
SRX9105165 Sperm 0.791 20.0 78319 1887.7 5297 881.0 4727 46115.8 0.995 WGBS of mus musculus: adult male sperm
SRX9105167 Sperm 0.786 19.4 76204 1761.1 6058 868.0 4314 45921.3 0.995 WGBS of mus musculus: adult male sperm
SRX9105168 Sperm 0.809 25.5 78500 2283.9 7499 881.5 4489 52929.6 0.995 WGBS of mus musculus: adult male sperm
SRX9105169 Sperm 0.811 25.0 75255 1693.9 7014 883.4 4178 40957.6 0.995 WGBS of mus musculus: adult male sperm
SRX9105170 Sperm 0.812 22.3 75742 1689.4 5638 878.9 4053 43032.8 0.995 WGBS of mus musculus: adult male sperm
SRX9105171 Sperm 0.816 22.5 75564 1706.8 5411 853.5 4087 45079.3 0.994 WGBS of mus musculus: adult male sperm
SRX9105172 Sperm 0.798 21.7 79194 1703.1 4404 851.0 4856 41798.1 0.994 WGBS of mus musculus: adult male sperm
SRX9105173 Sperm 0.793 19.6 78087 1762.5 4992 867.2 4308 47241.6 0.995 WGBS of mus musculus: adult male sperm
SRX9105174 Sperm 0.802 20.8 76646 1760.0 4629 867.6 5053 43608.5 0.995 WGBS of mus musculus: adult male sperm
SRX9105175 Sperm 0.808 22.5 80886 2429.9 5933 879.5 4440 59324.9 0.996 WGBS of mus musculus: adult male sperm

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.