Mouse methylome studies SRP155404 Track Settings
 
A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and postnatal growth retardation in mice [Epiblast, Hypothalamus, Liver]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX4473931 
SRX4473932 
SRX4473933 
SRX4473935 
SRX4473936 
SRX4473937 
SRX4473938 
SRX4473939 
SRX4473940 
SRX4473941 
SRX4473942 
SRX4473943 
SRX4473945 
SRX4473953 
SRX4473954 
SRX4473962 
SRX4473964 
SRX4473971 
SRX4473973 
SRX4473974 
SRX4473975 
experiment
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX4473931  HMR  Hypothalamus / SRX4473931 (HMR)   Data format 
hide
 Configure
 SRX4473931  CpG methylation  Hypothalamus / SRX4473931 (CpG methylation)   Data format 
hide
 SRX4473932  HMR  Hypothalamus / SRX4473932 (HMR)   Data format 
hide
 Configure
 SRX4473932  CpG methylation  Hypothalamus / SRX4473932 (CpG methylation)   Data format 
hide
 SRX4473933  HMR  Hypothalamus / SRX4473933 (HMR)   Data format 
hide
 Configure
 SRX4473933  CpG methylation  Hypothalamus / SRX4473933 (CpG methylation)   Data format 
hide
 SRX4473935  HMR  Hypothalamus / SRX4473935 (HMR)   Data format 
hide
 Configure
 SRX4473935  CpG methylation  Hypothalamus / SRX4473935 (CpG methylation)   Data format 
hide
 SRX4473936  HMR  Hypothalamus / SRX4473936 (HMR)   Data format 
hide
 Configure
 SRX4473936  CpG methylation  Hypothalamus / SRX4473936 (CpG methylation)   Data format 
hide
 SRX4473937  HMR  Hypothalamus / SRX4473937 (HMR)   Data format 
hide
 Configure
 SRX4473937  CpG methylation  Hypothalamus / SRX4473937 (CpG methylation)   Data format 
hide
 SRX4473938  HMR  Hypothalamus / SRX4473938 (HMR)   Data format 
hide
 Configure
 SRX4473938  CpG methylation  Hypothalamus / SRX4473938 (CpG methylation)   Data format 
hide
 SRX4473939  HMR  Hypothalamus / SRX4473939 (HMR)   Data format 
hide
 Configure
 SRX4473939  CpG methylation  Hypothalamus / SRX4473939 (CpG methylation)   Data format 
hide
 SRX4473940  HMR  Hypothalamus / SRX4473940 (HMR)   Data format 
hide
 Configure
 SRX4473940  CpG methylation  Hypothalamus / SRX4473940 (CpG methylation)   Data format 
hide
 SRX4473941  HMR  Hypothalamus / SRX4473941 (HMR)   Data format 
hide
 Configure
 SRX4473941  CpG methylation  Hypothalamus / SRX4473941 (CpG methylation)   Data format 
hide
 SRX4473942  HMR  Liver / SRX4473942 (HMR)   Data format 
hide
 Configure
 SRX4473942  CpG methylation  Liver / SRX4473942 (CpG methylation)   Data format 
hide
 SRX4473943  HMR  Liver / SRX4473943 (HMR)   Data format 
hide
 Configure
 SRX4473943  CpG methylation  Liver / SRX4473943 (CpG methylation)   Data format 
hide
 SRX4473945  HMR  Liver / SRX4473945 (HMR)   Data format 
hide
 Configure
 SRX4473945  CpG methylation  Liver / SRX4473945 (CpG methylation)   Data format 
hide
 SRX4473953  HMR  Epiblast / SRX4473953 (HMR)   Data format 
hide
 Configure
 SRX4473953  CpG methylation  Epiblast / SRX4473953 (CpG methylation)   Data format 
hide
 SRX4473954  HMR  Epiblast / SRX4473954 (HMR)   Data format 
hide
 Configure
 SRX4473954  CpG methylation  Epiblast / SRX4473954 (CpG methylation)   Data format 
hide
 SRX4473962  HMR  Epiblast / SRX4473962 (HMR)   Data format 
hide
 Configure
 SRX4473962  CpG methylation  Epiblast / SRX4473962 (CpG methylation)   Data format 
hide
 SRX4473964  HMR  Epiblast / SRX4473964 (HMR)   Data format 
hide
 Configure
 SRX4473964  CpG methylation  Epiblast / SRX4473964 (CpG methylation)   Data format 
hide
 SRX4473971  HMR  Hypothalamus / SRX4473971 (HMR)   Data format 
hide
 Configure
 SRX4473971  CpG methylation  Hypothalamus / SRX4473971 (CpG methylation)   Data format 
hide
 SRX4473973  HMR  Hypothalamus / SRX4473973 (HMR)   Data format 
hide
 Configure
 SRX4473973  CpG methylation  Hypothalamus / SRX4473973 (CpG methylation)   Data format 
hide
 SRX4473974  HMR  Hypothalamus / SRX4473974 (HMR)   Data format 
hide
 Configure
 SRX4473974  CpG methylation  Hypothalamus / SRX4473974 (CpG methylation)   Data format 
hide
 SRX4473975  HMR  Hypothalamus / SRX4473975 (HMR)   Data format 
hide
 Configure
 SRX4473975  CpG methylation  Hypothalamus / SRX4473975 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and postnatal growth retardation in mice
SRA: SRP155404
GEO: GSE117728
Pubmed: 31015495

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX4473931 Hypothalamus 0.735 3.0 27253 1435.8 16 1238.2 285 40313.1 0.973 GSM3307742: Adult_ht_PBAT_++_1; Mus musculus; Bisulfite-Seq
SRX4473932 Hypothalamus 0.736 3.3 27238 1415.8 21 1340.0 291 36866.6 0.973 GSM3307743: Adult_ht_PBAT_++_2; Mus musculus; Bisulfite-Seq
SRX4473933 Hypothalamus 0.727 3.2 26948 1455.6 20 952.0 332 36242.7 0.972 GSM3307744: Adult_ht_PBAT_++_3; Mus musculus; Bisulfite-Seq
SRX4473935 Hypothalamus 0.702 1.7 26654 1733.5 6 968.0 220 91709.1 0.978 GSM3307746: Adult_ht_PBAT_del+_2; Mus musculus; Bisulfite-Seq
SRX4473936 Hypothalamus 0.713 1.9 28082 1657.6 3 725.0 313 70895.9 0.981 GSM3307747: Adult_ht_PBAT_del+_3; Mus musculus; Bisulfite-Seq
SRX4473937 Hypothalamus 0.704 2.8 28661 1528.0 16 1023.5 213 53775.9 0.982 GSM3307748: Adult_ht_PBAT_del-mut_1; Mus musculus; Bisulfite-Seq
SRX4473938 Hypothalamus 0.713 3.0 29189 1495.0 12 1365.3 216 47367.2 0.982 GSM3307749: Adult_ht_PBAT_del-mut_2; Mus musculus; Bisulfite-Seq
SRX4473939 Hypothalamus 0.712 3.1 29258 1475.0 17 929.1 224 46018.8 0.982 GSM3307750: Adult_ht_PBAT_del-mut_3; Mus musculus; Bisulfite-Seq
SRX4473940 Hypothalamus 0.719 3.1 27913 1422.3 34 1064.5 160 48187.9 0.978 GSM3307751: Adult_ht_PBAT_+mut_1; Mus musculus; Bisulfite-Seq
SRX4473941 Hypothalamus 0.736 3.7 28050 1271.1 25 1079.6 232 38107.2 0.975 GSM3307752: Adult_ht_PBAT_+mut_2; Mus musculus; Bisulfite-Seq
SRX4473942 Liver 0.689 2.0 24401 1976.3 10 954.5 172 59048.3 0.983 GSM3307753: Adult_liv_PBAT_++_1; Mus musculus; Bisulfite-Seq
SRX4473943 Liver 0.708 1.9 25295 1941.4 12 1075.6 219 62815.5 0.983 GSM3307754: Adult_liv_PBAT_++_2; Mus musculus; Bisulfite-Seq
SRX4473945 Liver 0.680 1.9 24743 2316.8 4 1031.0 127 114703.0 0.984 GSM3307756: Adult_liv_PBAT_del-mut_1; Mus musculus; Bisulfite-Seq
SRX4473953 Epiblast 0.755 2.1 23349 1695.8 23 1303.1 141 68388.0 0.971 GSM3307764: E7.5_epi_PBAT_++_1; Mus musculus; Bisulfite-Seq
SRX4473954 Epiblast 0.758 2.1 23352 1671.3 38 1183.6 102 72441.4 0.965 GSM3307765: E7.5_epi_PBAT_++_2; Mus musculus; Bisulfite-Seq
SRX4473962 Epiblast 0.733 2.4 24838 1649.9 15 815.8 138 66491.1 0.971 GSM3307773: E7.5_epi_PBAT_del-mut_2; Mus musculus; Bisulfite-Seq
SRX4473964 Epiblast 0.744 2.1 24756 1593.4 28 1225.5 172 72884.9 0.969 GSM3307775: E7.5_epi_PBAT_del-mut_4; Mus musculus; Bisulfite-Seq
SRX4473971 Hypothalamus 0.681 2.1 29984 1910.7 5 1326.6 96 110043.8 0.983 GSM3307782: P1_ht_PBAT_del-mut_1; Mus musculus; Bisulfite-Seq
SRX4473973 Hypothalamus 0.708 2.1 24456 1613.9 7 1128.1 180 53411.9 0.973 GSM3307784: P25_ht_PBAT_++_1; Mus musculus; Bisulfite-Seq
SRX4473974 Hypothalamus 0.714 2.4 24638 1591.5 3 859.7 166 50416.2 0.973 GSM3307785: P25_ht_PBAT_++_2; Mus musculus; Bisulfite-Seq
SRX4473975 Hypothalamus 0.687 3.0 27719 1570.1 20 950.2 156 47134.8 0.980 GSM3307786: P25_ht_PBAT_del-mut_1; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.