Mouse methylome studies SRP113417 Track Settings
 
Chromatin and Transcriptional Dynamics in Adult Germline Stem Cells and Mammalian Spermatogenesis [Mature Sperm, Sperm, Spermatids, Spermatocytes, Spermatogonia, Spermatogonia (Thy1+)]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
AMR       HMR       CpG reads ▾       CpG methylation ▾       PMD      
Select subtracks by views and experiment:
 All views AMR  HMR  CpG reads  CpG methylation  PMD 
experiment
SRX332323 
SRX332324 
SRX332325 
SRX332326 
SRX332327 
SRX332328 
SRX332329 
SRX332330 
SRX332331 
SRX332332 
SRX332333 
SRX332334 
SRX332335 
SRX332336 
SRX332337 
SRX332338 
SRX688595 
SRX688596 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX332323  HMR  Spermatogonia / SRX332323 (HMR)   Data format 
hide
 Configure
 SRX332323  CpG methylation  Spermatogonia / SRX332323 (CpG methylation)   Data format 
hide
 SRX332324  HMR  Spermatogonia / SRX332324 (HMR)   Data format 
hide
 Configure
 SRX332324  CpG methylation  Spermatogonia / SRX332324 (CpG methylation)   Data format 
hide
 SRX332325  HMR  Spermatogonia / SRX332325 (HMR)   Data format 
hide
 Configure
 SRX332325  CpG methylation  Spermatogonia / SRX332325 (CpG methylation)   Data format 
hide
 SRX332326  HMR  Spermatogonia / SRX332326 (HMR)   Data format 
hide
 Configure
 SRX332326  CpG methylation  Spermatogonia / SRX332326 (CpG methylation)   Data format 
hide
 SRX332327  HMR  Spermatocytes / SRX332327 (HMR)   Data format 
hide
 Configure
 SRX332327  CpG methylation  Spermatocytes / SRX332327 (CpG methylation)   Data format 
hide
 SRX332328  HMR  Spermatocytes / SRX332328 (HMR)   Data format 
hide
 Configure
 SRX332328  CpG methylation  Spermatocytes / SRX332328 (CpG methylation)   Data format 
hide
 SRX332329  HMR  Spermatocytes / SRX332329 (HMR)   Data format 
hide
 Configure
 SRX332329  CpG methylation  Spermatocytes / SRX332329 (CpG methylation)   Data format 
hide
 SRX332330  HMR  Spermatocytes / SRX332330 (HMR)   Data format 
hide
 Configure
 SRX332330  CpG methylation  Spermatocytes / SRX332330 (CpG methylation)   Data format 
hide
 SRX332331  HMR  Spermatids / SRX332331 (HMR)   Data format 
hide
 Configure
 SRX332331  CpG methylation  Spermatids / SRX332331 (CpG methylation)   Data format 
hide
 SRX332332  HMR  Spermatids / SRX332332 (HMR)   Data format 
hide
 Configure
 SRX332332  CpG methylation  Spermatids / SRX332332 (CpG methylation)   Data format 
hide
 SRX332333  HMR  Spermatids / SRX332333 (HMR)   Data format 
hide
 Configure
 SRX332333  CpG methylation  Spermatids / SRX332333 (CpG methylation)   Data format 
hide
 SRX332334  HMR  Spermatids / SRX332334 (HMR)   Data format 
hide
 Configure
 SRX332334  CpG methylation  Spermatids / SRX332334 (CpG methylation)   Data format 
hide
 SRX332335  HMR  Mature Sperm / SRX332335 (HMR)   Data format 
hide
 Configure
 SRX332335  CpG methylation  Mature Sperm / SRX332335 (CpG methylation)   Data format 
hide
 SRX332336  HMR  Mature Sperm / SRX332336 (HMR)   Data format 
hide
 Configure
 SRX332336  CpG methylation  Mature Sperm / SRX332336 (CpG methylation)   Data format 
hide
 SRX332337  HMR  Mature Sperm / SRX332337 (HMR)   Data format 
hide
 Configure
 SRX332337  CpG methylation  Mature Sperm / SRX332337 (CpG methylation)   Data format 
hide
 SRX332338  HMR  Mature Sperm / SRX332338 (HMR)   Data format 
hide
 Configure
 SRX332338  CpG methylation  Mature Sperm / SRX332338 (CpG methylation)   Data format 
hide
 SRX688595  HMR  Spermatogonia (Thy1+) / SRX688595 (HMR)   Data format 
hide
 Configure
 SRX688595  CpG methylation  Spermatogonia (Thy1+) / SRX688595 (CpG methylation)   Data format 
hide
 SRX688596  HMR  Spermatogonia (Thy1+) / SRX688596 (HMR)   Data format 
hide
 Configure
 SRX688596  CpG methylation  Spermatogonia (Thy1+) / SRX688596 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Chromatin and Transcriptional Dynamics in Adult Germline Stem Cells and Mammalian Spermatogenesis
SRA: SRP113417
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX332323 Spermatogonia 0.749 11.4 58569 1406.6 2404 859.5 1879 60963.5 0.995 GSM1202738: AGSC_Kit_BiSeq_Rep1; Mus musculus; Bisulfite-Seq
SRX332324 Spermatogonia 0.748 10.8 58507 1404.1 2293 852.5 2137 55094.8 0.995 GSM1202739: AGSC_Kit_BiSeq_Rep2; Mus musculus; Bisulfite-Seq
SRX332325 Spermatogonia 0.748 11.0 58467 1407.5 2421 848.6 1847 60268.5 0.995 GSM1202740: AGSC_Kit_BiSeq_Rep3; Mus musculus; Bisulfite-Seq
SRX332326 Spermatogonia 0.749 11.0 58404 1409.8 2343 855.2 1991 57570.5 0.995 GSM1202741: AGSC_Kit_BiSeq_Rep4; Mus musculus; Bisulfite-Seq
SRX332327 Spermatocytes 0.807 6.9 57162 1535.3 1073 854.6 1139 131244.1 0.994 GSM1202742: SC_BiSeq_Rep1; Mus musculus; Bisulfite-Seq
SRX332328 Spermatocytes 0.801 6.5 56145 1537.2 798 876.1 1150 129878.3 0.994 GSM1202743: SC_BiSeq_Rep2; Mus musculus; Bisulfite-Seq
SRX332329 Spermatocytes 0.803 6.4 56117 1539.5 800 856.9 1298 117479.7 0.995 GSM1202744: SC_BiSeq_Rep3; Mus musculus; Bisulfite-Seq
SRX332330 Spermatocytes 0.803 6.3 56207 1537.0 806 846.4 1247 121826.7 0.994 GSM1202745: SC_BiSeq_Rep4; Mus musculus; Bisulfite-Seq
SRX332331 Spermatids 0.788 7.8 58151 1477.9 965 859.7 1510 90703.9 0.996 GSM1202746: ST_BiSeq_Rep1; Mus musculus; Bisulfite-Seq
SRX332332 Spermatids 0.788 7.3 57627 1483.4 877 869.5 1455 92247.0 0.996 GSM1202747: ST_BiSeq_Rep2; Mus musculus; Bisulfite-Seq
SRX332333 Spermatids 0.788 7.1 57335 1486.4 824 858.8 1357 96177.8 0.996 GSM1202748: ST_BiSeq_Rep3; Mus musculus; Bisulfite-Seq
SRX332334 Spermatids 0.787 7.2 57615 1482.2 857 885.3 1466 91157.6 0.996 GSM1202749: ST_BiSeq_Rep4; Mus musculus; Bisulfite-Seq
SRX332335 Mature Sperm 0.791 7.1 61052 1564.0 1007 851.4 1371 105169.8 0.996 GSM1202750: M_BiSeq_Rep1; Mus musculus; Bisulfite-Seq
SRX332336 Mature Sperm 0.795 7.5 61735 1575.1 1198 842.4 1428 103651.7 0.996 GSM1202751: M_BiSeq_Rep2; Mus musculus; Bisulfite-Seq
SRX332337 Mature Sperm 0.794 7.6 61701 1576.9 1185 852.3 1326 108917.6 0.996 GSM1202752: M_BiSeq_Rep3; Mus musculus; Bisulfite-Seq
SRX332338 Mature Sperm 0.794 7.5 61553 1574.7 1164 858.0 1422 105173.8 0.996 GSM1202753: M_BiSeq_Rep4; Mus musculus; Bisulfite-Seq
SRX688595 Spermatogonia (Thy1+) 0.786 2.4 37812 1550.2 113 926.5 544 152148.2 0.991 GSM1489492: AGSC_Thy1_BiSeq_Rep6; Mus musculus; Bisulfite-Seq
SRX688596 Spermatogonia (Thy1+) 0.767 4.6 40473 1463.2 1315 871.0 788 62055.9 0.984 GSM1489493: AGSC_Thy1_BiSeq_Rep7; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.