Mouse methylome studies SRP049674 Track Settings
 
Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain [Brain (Neocortex), Excitatory Pyramidal Neurons, Parvalbumin-Positive (PV) Inhibitory Neurons]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
CpG reads ▾       PMD       CpG methylation ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views CpG reads  PMD  CpG methylation  AMR  HMR 
experiment
SRX757066 
SRX757067 
SRX757068 
SRX757069 
SRX757070 
SRX757071 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX757066  HMR  Excitatory Pyramidal Neurons / SRX757066 (HMR)   Data format 
hide
 SRX757066  AMR  Excitatory Pyramidal Neurons / SRX757066 (AMR)   Data format 
hide
 SRX757066  PMD  Excitatory Pyramidal Neurons / SRX757066 (PMD)   Data format 
hide
 Configure
 SRX757066  CpG methylation  Excitatory Pyramidal Neurons / SRX757066 (CpG methylation)   Data format 
hide
 Configure
 SRX757066  CpG reads  Excitatory Pyramidal Neurons / SRX757066 (CpG reads)   Data format 
hide
 SRX757067  HMR  Excitatory Pyramidal Neurons / SRX757067 (HMR)   Data format 
hide
 SRX757067  AMR  Excitatory Pyramidal Neurons / SRX757067 (AMR)   Data format 
hide
 SRX757067  PMD  Excitatory Pyramidal Neurons / SRX757067 (PMD)   Data format 
hide
 Configure
 SRX757067  CpG methylation  Excitatory Pyramidal Neurons / SRX757067 (CpG methylation)   Data format 
hide
 Configure
 SRX757067  CpG reads  Excitatory Pyramidal Neurons / SRX757067 (CpG reads)   Data format 
hide
 SRX757068  HMR  Parvalbumin-Positive (PV) Inhibitory Neurons / SRX757068 (HMR)   Data format 
hide
 SRX757068  AMR  Parvalbumin-Positive (PV) Inhibitory Neurons / SRX757068 (AMR)   Data format 
hide
 SRX757068  PMD  Parvalbumin-Positive (PV) Inhibitory Neurons / SRX757068 (PMD)   Data format 
hide
 Configure
 SRX757068  CpG methylation  Parvalbumin-Positive (PV) Inhibitory Neurons / SRX757068 (CpG methylation)   Data format 
hide
 Configure
 SRX757068  CpG reads  Parvalbumin-Positive (PV) Inhibitory Neurons / SRX757068 (CpG reads)   Data format 
hide
 SRX757069  HMR  Parvalbumin-Positive (PV) Inhibitory Neurons / SRX757069 (HMR)   Data format 
hide
 SRX757069  AMR  Parvalbumin-Positive (PV) Inhibitory Neurons / SRX757069 (AMR)   Data format 
hide
 SRX757069  PMD  Parvalbumin-Positive (PV) Inhibitory Neurons / SRX757069 (PMD)   Data format 
hide
 Configure
 SRX757069  CpG methylation  Parvalbumin-Positive (PV) Inhibitory Neurons / SRX757069 (CpG methylation)   Data format 
hide
 Configure
 SRX757069  CpG reads  Parvalbumin-Positive (PV) Inhibitory Neurons / SRX757069 (CpG reads)   Data format 
hide
 SRX757070  HMR  Brain (Neocortex) / SRX757070 (HMR)   Data format 
hide
 SRX757070  AMR  Brain (Neocortex) / SRX757070 (AMR)   Data format 
hide
 SRX757070  PMD  Brain (Neocortex) / SRX757070 (PMD)   Data format 
hide
 Configure
 SRX757070  CpG methylation  Brain (Neocortex) / SRX757070 (CpG methylation)   Data format 
hide
 Configure
 SRX757070  CpG reads  Brain (Neocortex) / SRX757070 (CpG reads)   Data format 
hide
 SRX757071  HMR  Brain (Neocortex) / SRX757071 (HMR)   Data format 
hide
 SRX757071  AMR  Brain (Neocortex) / SRX757071 (AMR)   Data format 
hide
 SRX757071  PMD  Brain (Neocortex) / SRX757071 (PMD)   Data format 
hide
 Configure
 SRX757071  CpG methylation  Brain (Neocortex) / SRX757071 (CpG methylation)   Data format 
hide
 Configure
 SRX757071  CpG reads  Brain (Neocortex) / SRX757071 (CpG reads)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain
SRA: SRP049674
GEO: GSE63137
Pubmed: 26087164

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX757066 Excitatory Pyramidal Neurons 0.802 13.5 78011 1335.1 384 985.6 4686 19964.0 0.976 GSM1541958: MethylC-seq_excitatory_neurons_rep1; Mus musculus; Bisulfite-Seq
SRX757067 Excitatory Pyramidal Neurons 0.804 12.8 77018 1350.3 431 995.5 5112 18848.9 0.975 GSM1541959: MethylC-seq_excitatory_neurons_rep2; Mus musculus; Bisulfite-Seq
SRX757068 Parvalbumin-Positive (PV) Inhibitory Neurons 0.824 16.4 71332 1215.5 546 1035.0 5038 21783.8 0.966 GSM1541960: MethylC-seq_PV_neurons_rep1; Mus musculus; Bisulfite-Seq
SRX757069 Parvalbumin-Positive (PV) Inhibitory Neurons 0.823 17.2 71338 1253.2 416 999.7 5241 21750.7 0.967 GSM1541961: MethylC-seq_PV_neurons_rep2; Mus musculus; Bisulfite-Seq
SRX757070 Brain (Neocortex) 0.823 14.4 65077 1110.7 449 1000.1 3755 13311.1 0.974 GSM1541962: MethylC-seq_VIP_neurons_rep1; Mus musculus; Bisulfite-Seq
SRX757071 Brain (Neocortex) 0.821 17.7 68194 1115.7 515 1024.5 4128 13928.5 0.974 GSM1541963: MethylC-seq_VIP_neurons_rep2; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.