Mouse methylome studies SRP425083 Track Settings
 
T regulatory cells epigenetic changes in food induced anaphylaxis animal model after immunotherapy. [T Regulatory Cells]

Track collection: Mouse methylome studies

+  All tracks in this collection (559)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX19533989 
SRX19533990 
SRX19533991 
SRX19533992 
SRX19533993 
SRX19533994 
SRX19533995 
SRX19533996 
SRX19533997 
SRX19533998 
SRX19533999 
SRX19534000 
SRX19534001 
SRX19534002 
SRX19534003 
SRX19534004 
SRX19534005 
SRX19534006 
SRX19534007 
SRX19534008 
SRX19534009 
SRX19534010 
SRX19534011 
SRX19534012 
SRX19534013 
SRX19534014 
experiment
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX19533989  HMR  T Regulatory Cells / SRX19533989 (HMR)   Data format 
hide
 Configure
 SRX19533989  CpG methylation  T Regulatory Cells / SRX19533989 (CpG methylation)   Data format 
hide
 SRX19533990  HMR  T Regulatory Cells / SRX19533990 (HMR)   Data format 
hide
 Configure
 SRX19533990  CpG methylation  T Regulatory Cells / SRX19533990 (CpG methylation)   Data format 
hide
 SRX19533991  HMR  T Regulatory Cells / SRX19533991 (HMR)   Data format 
hide
 Configure
 SRX19533991  CpG methylation  T Regulatory Cells / SRX19533991 (CpG methylation)   Data format 
hide
 SRX19533992  HMR  T Regulatory Cells / SRX19533992 (HMR)   Data format 
hide
 Configure
 SRX19533992  CpG methylation  T Regulatory Cells / SRX19533992 (CpG methylation)   Data format 
hide
 SRX19533993  HMR  T Regulatory Cells / SRX19533993 (HMR)   Data format 
hide
 Configure
 SRX19533993  CpG methylation  T Regulatory Cells / SRX19533993 (CpG methylation)   Data format 
hide
 SRX19533994  HMR  T Regulatory Cells / SRX19533994 (HMR)   Data format 
hide
 Configure
 SRX19533994  CpG methylation  T Regulatory Cells / SRX19533994 (CpG methylation)   Data format 
hide
 SRX19533995  HMR  T Regulatory Cells / SRX19533995 (HMR)   Data format 
hide
 Configure
 SRX19533995  CpG methylation  T Regulatory Cells / SRX19533995 (CpG methylation)   Data format 
hide
 SRX19533996  HMR  T Regulatory Cells / SRX19533996 (HMR)   Data format 
hide
 Configure
 SRX19533996  CpG methylation  T Regulatory Cells / SRX19533996 (CpG methylation)   Data format 
hide
 SRX19533997  HMR  T Regulatory Cells / SRX19533997 (HMR)   Data format 
hide
 Configure
 SRX19533997  CpG methylation  T Regulatory Cells / SRX19533997 (CpG methylation)   Data format 
hide
 SRX19533998  HMR  T Regulatory Cells / SRX19533998 (HMR)   Data format 
hide
 Configure
 SRX19533998  CpG methylation  T Regulatory Cells / SRX19533998 (CpG methylation)   Data format 
hide
 SRX19533999  HMR  T Regulatory Cells / SRX19533999 (HMR)   Data format 
hide
 Configure
 SRX19533999  CpG methylation  T Regulatory Cells / SRX19533999 (CpG methylation)   Data format 
hide
 SRX19534000  HMR  T Regulatory Cells / SRX19534000 (HMR)   Data format 
hide
 Configure
 SRX19534000  CpG methylation  T Regulatory Cells / SRX19534000 (CpG methylation)   Data format 
hide
 SRX19534001  HMR  T Regulatory Cells / SRX19534001 (HMR)   Data format 
hide
 Configure
 SRX19534001  CpG methylation  T Regulatory Cells / SRX19534001 (CpG methylation)   Data format 
hide
 SRX19534002  HMR  T Regulatory Cells / SRX19534002 (HMR)   Data format 
hide
 Configure
 SRX19534002  CpG methylation  T Regulatory Cells / SRX19534002 (CpG methylation)   Data format 
hide
 SRX19534003  HMR  T Regulatory Cells / SRX19534003 (HMR)   Data format 
hide
 Configure
 SRX19534003  CpG methylation  T Regulatory Cells / SRX19534003 (CpG methylation)   Data format 
hide
 SRX19534004  HMR  T Regulatory Cells / SRX19534004 (HMR)   Data format 
hide
 Configure
 SRX19534004  CpG methylation  T Regulatory Cells / SRX19534004 (CpG methylation)   Data format 
hide
 SRX19534005  HMR  T Regulatory Cells / SRX19534005 (HMR)   Data format 
hide
 Configure
 SRX19534005  CpG methylation  T Regulatory Cells / SRX19534005 (CpG methylation)   Data format 
hide
 SRX19534006  HMR  T Regulatory Cells / SRX19534006 (HMR)   Data format 
hide
 Configure
 SRX19534006  CpG methylation  T Regulatory Cells / SRX19534006 (CpG methylation)   Data format 
hide
 SRX19534007  HMR  T Regulatory Cells / SRX19534007 (HMR)   Data format 
hide
 Configure
 SRX19534007  CpG methylation  T Regulatory Cells / SRX19534007 (CpG methylation)   Data format 
hide
 SRX19534008  HMR  T Regulatory Cells / SRX19534008 (HMR)   Data format 
hide
 Configure
 SRX19534008  CpG methylation  T Regulatory Cells / SRX19534008 (CpG methylation)   Data format 
hide
 SRX19534009  HMR  T Regulatory Cells / SRX19534009 (HMR)   Data format 
hide
 Configure
 SRX19534009  CpG methylation  T Regulatory Cells / SRX19534009 (CpG methylation)   Data format 
hide
 SRX19534010  HMR  T Regulatory Cells / SRX19534010 (HMR)   Data format 
hide
 Configure
 SRX19534010  CpG methylation  T Regulatory Cells / SRX19534010 (CpG methylation)   Data format 
hide
 SRX19534011  HMR  T Regulatory Cells / SRX19534011 (HMR)   Data format 
hide
 Configure
 SRX19534011  CpG methylation  T Regulatory Cells / SRX19534011 (CpG methylation)   Data format 
hide
 SRX19534012  HMR  T Regulatory Cells / SRX19534012 (HMR)   Data format 
hide
 Configure
 SRX19534012  CpG methylation  T Regulatory Cells / SRX19534012 (CpG methylation)   Data format 
hide
 SRX19534013  HMR  T Regulatory Cells / SRX19534013 (HMR)   Data format 
hide
 Configure
 SRX19534013  CpG methylation  T Regulatory Cells / SRX19534013 (CpG methylation)   Data format 
hide
 SRX19534014  HMR  T Regulatory Cells / SRX19534014 (HMR)   Data format 
hide
 Configure
 SRX19534014  CpG methylation  T Regulatory Cells / SRX19534014 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: T regulatory cells epigenetic changes in food induced anaphylaxis animal model after immunotherapy.
SRA: SRP425083
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX19533989 T Regulatory Cells 0.768 22.5 54672 1169.1 1340 991.4 3449 15215.9 0.984 WGBS-seq of spleen T regulatory cells DNA
SRX19533990 T Regulatory Cells 0.772 20.4 53023 1234.7 1213 975.5 3720 15628.4 0.983 WGBS-seq of spleen T regulatory cells DNA
SRX19533991 T Regulatory Cells 0.774 22.0 56394 1194.3 1187 1004.9 3813 16161.6 0.983 WGBS-seq of spleen T regulatory cells DNA
SRX19533992 T Regulatory Cells 0.772 22.0 54148 1217.8 1206 978.5 3964 15455.0 0.984 WGBS-seq of spleen T regulatory cells DNA
SRX19533993 T Regulatory Cells 0.787 24.3 56341 1212.3 1350 986.8 4026 17157.8 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19533994 T Regulatory Cells 0.773 25.1 55129 1207.4 1364 985.0 4005 16102.4 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19533995 T Regulatory Cells 0.763 24.1 55367 1201.8 1337 977.2 3633 16485.1 0.983 WGBS-seq of spleen T regulatory cells DNA
SRX19533996 T Regulatory Cells 0.786 21.3 54335 1238.2 1108 1003.9 3709 16975.5 0.983 WGBS-seq of spleen T regulatory cells DNA
SRX19533997 T Regulatory Cells 0.776 22.1 54382 1222.3 1159 984.9 4025 15587.9 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19533998 T Regulatory Cells 0.781 22.4 55642 1203.8 1202 999.6 3889 16505.4 0.983 WGBS-seq of spleen T regulatory cells DNA
SRX19533999 T Regulatory Cells 0.782 23.3 55508 1216.0 1261 984.0 4324 16025.2 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19534000 T Regulatory Cells 0.775 23.5 54688 1220.3 1363 1001.0 3942 16120.3 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19534001 T Regulatory Cells 0.783 19.0 53366 1255.3 1069 1014.0 3962 16173.4 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19534002 T Regulatory Cells 0.783 23.1 56037 1205.8 1317 994.5 4255 16304.8 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19534003 T Regulatory Cells 0.780 22.0 53695 1239.7 1191 990.6 3824 16374.2 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19534004 T Regulatory Cells 0.782 23.8 55643 1213.4 1354 982.7 3773 16725.0 0.983 WGBS-seq of spleen T regulatory cells DNA
SRX19534005 T Regulatory Cells 0.768 21.9 53402 1220.7 1232 990.2 3743 15621.3 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19534006 T Regulatory Cells 0.776 23.2 54996 1217.2 1357 997.0 3850 16086.1 0.983 WGBS-seq of spleen T regulatory cells DNA
SRX19534007 T Regulatory Cells 0.783 26.4 56343 1197.9 1431 983.1 4172 15874.5 0.984 WGBS-seq of spleen T regulatory cells DNA
SRX19534008 T Regulatory Cells 0.780 22.0 54979 1221.2 1213 988.3 4063 16142.3 0.983 WGBS-seq of spleen T regulatory cells DNA
SRX19534009 T Regulatory Cells 0.818 10.1 35554 1705.6 171 920.2 2235 28183.8 0.983 WGBS-seq of spleen T regulatory cells DNA
SRX19534010 T Regulatory Cells 0.772 24.1 55920 1199.4 1292 996.4 3832 16057.1 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19534011 T Regulatory Cells 0.785 23.1 56470 1201.6 1256 999.1 3778 17202.0 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19534012 T Regulatory Cells 0.773 23.6 55677 1195.1 1260 1000.0 3739 16344.8 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19534013 T Regulatory Cells 0.780 23.2 57361 1148.4 843 872.1 3980 16441.2 0.982 WGBS-seq of spleen T regulatory cells DNA
SRX19534014 T Regulatory Cells 0.770 22.1 54852 1205.9 1213 996.7 3971 15467.3 0.984 WGBS-seq of spleen T regulatory cells DNA

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.