Mouse methylome studies SRP404930 Track Settings
 
LN-stem, tumor stem, tumor terminally differentiated CD8 T cells from human kidney cancer [CD8 T Cell, Endo CD8 T Cell, P14 CD8 T Cell]

Track collection: Mouse methylome studies

+  All tracks in this collection (559)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX18916808 
SRX18916809 
SRX18916810 
SRX18916811 
SRX18916812 
SRX18916813 
SRX18916814 
SRX18916815 
SRX18916816 
SRX18916817 
SRX18916818 
SRX18916819 
SRX18916820 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX18916808  HMR  P14 CD8 T Cell / SRX18916808 (HMR)   Data format 
hide
 Configure
 SRX18916808  CpG methylation  P14 CD8 T Cell / SRX18916808 (CpG methylation)   Data format 
hide
 SRX18916809  HMR  P14 CD8 T Cell / SRX18916809 (HMR)   Data format 
hide
 Configure
 SRX18916809  CpG methylation  P14 CD8 T Cell / SRX18916809 (CpG methylation)   Data format 
hide
 SRX18916810  HMR  P14 CD8 T Cell / SRX18916810 (HMR)   Data format 
hide
 Configure
 SRX18916810  CpG methylation  P14 CD8 T Cell / SRX18916810 (CpG methylation)   Data format 
hide
 SRX18916811  HMR  P14 CD8 T Cell / SRX18916811 (HMR)   Data format 
hide
 Configure
 SRX18916811  CpG methylation  P14 CD8 T Cell / SRX18916811 (CpG methylation)   Data format 
hide
 SRX18916812  HMR  P14 CD8 T Cell / SRX18916812 (HMR)   Data format 
hide
 Configure
 SRX18916812  CpG methylation  P14 CD8 T Cell / SRX18916812 (CpG methylation)   Data format 
hide
 SRX18916813  HMR  P14 CD8 T Cell / SRX18916813 (HMR)   Data format 
hide
 Configure
 SRX18916813  CpG methylation  P14 CD8 T Cell / SRX18916813 (CpG methylation)   Data format 
hide
 SRX18916814  HMR  P14 CD8 T Cell / SRX18916814 (HMR)   Data format 
hide
 Configure
 SRX18916814  CpG methylation  P14 CD8 T Cell / SRX18916814 (CpG methylation)   Data format 
hide
 SRX18916815  HMR  P14 CD8 T Cell / SRX18916815 (HMR)   Data format 
hide
 Configure
 SRX18916815  CpG methylation  P14 CD8 T Cell / SRX18916815 (CpG methylation)   Data format 
hide
 SRX18916816  HMR  Endo CD8 T Cell / SRX18916816 (HMR)   Data format 
hide
 Configure
 SRX18916816  CpG methylation  Endo CD8 T Cell / SRX18916816 (CpG methylation)   Data format 
hide
 SRX18916817  HMR  P14 CD8 T Cell / SRX18916817 (HMR)   Data format 
hide
 Configure
 SRX18916817  CpG methylation  P14 CD8 T Cell / SRX18916817 (CpG methylation)   Data format 
hide
 Configure
 SRX18916818  CpG methylation  P14 CD8 T Cell / SRX18916818 (CpG methylation)   Data format 
hide
 SRX18916819  HMR  P14 CD8 T Cell / SRX18916819 (HMR)   Data format 
hide
 Configure
 SRX18916819  CpG methylation  P14 CD8 T Cell / SRX18916819 (CpG methylation)   Data format 
hide
 SRX18916820  HMR  Endo CD8 T Cell / SRX18916820 (HMR)   Data format 
hide
 Configure
 SRX18916820  CpG methylation  Endo CD8 T Cell / SRX18916820 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: LN-stem, tumor stem, tumor terminally differentiated CD8 T cells from human kidney cancer
SRA: SRP404930
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX18916808 P14 CD8 T Cell 0.801 11.9 57860 985.0 5168 1797.9 3532 8334.3 0.996 GSM6862384: Naïve1_mouse_methylation; Mus musculus; Bisulfite-Seq
SRX18916809 P14 CD8 T Cell 0.763 7.7 45412 1117.2 3858 1718.1 1446 17323.6 0.996 GSM6862385: LCMVUndiv_mouse_methylation; Mus musculus; Bisulfite-Seq
SRX18916810 P14 CD8 T Cell 0.757 9.0 48897 1081.1 5097 1708.4 1593 18174.4 0.997 GSM6862386: LCMVDiv1_mouse_methylation; Mus musculus; Bisulfite-Seq
SRX18916811 P14 CD8 T Cell 0.763 10.5 51802 1063.5 4944 1722.1 2288 12963.0 0.997 GSM6862387: LCMVDiv2_mouse_methylation; Mus musculus; Bisulfite-Seq
SRX18916812 P14 CD8 T Cell 0.807 16.7 61323 936.1 7172 1725.1 3961 7887.7 0.995 GSM6862388: Naïve2_mouse_methylation; Mus musculus; Bisulfite-Seq
SRX18916813 P14 CD8 T Cell 0.800 16.7 61257 925.2 8122 1705.1 3527 8192.9 0.995 GSM6862389: TDLNUndiv_mouse_methylation; Mus musculus; Bisulfite-Seq
SRX18916814 P14 CD8 T Cell 0.794 10.8 51063 1033.9 3200 1761.0 1895 12557.7 0.995 GSM6862390: TDLNDiv1_mouse_methylation; Mus musculus; Bisulfite-Seq
SRX18916815 P14 CD8 T Cell 0.781 11.9 51834 1014.9 4166 1716.8 1818 12514.9 0.995 GSM6862391: TDLNDiv2_mouse_methylation; Mus musculus; Bisulfite-Seq
SRX18916816 Endo CD8 T Cell 0.750 8.9 39173 1176.0 2694 1866.1 1076 12535.7 0.996 GSM6862392: TRAMP127_mouse_methylation; Mus musculus; Bisulfite-Seq
SRX18916817 P14 CD8 T Cell 0.835 9.6 30120 1073.6 1091 2009.6 625 30817.2 0.995 GSM6862394: Naïve3_mouse_methylation; Mus musculus; Bisulfite-Seq
SRX18916818 P14 CD8 T Cell 0.784 10.4 10630 549.5 795 2037.9 44 195332.3 0.994 GSM6862395: TDLND7.1_mouse_methylation; Mus musculus; Bisulfite-Seq
SRX18916819 P14 CD8 T Cell 0.805 9.2 29032 1203.7 1219 2045.6 521 30940.9 0.994 GSM6862396: TDLND7.2_mouse_methylation; Mus musculus; Bisulfite-Seq
SRX18916820 Endo CD8 T Cell 0.693 12.7 39422 1120.6 4940 1724.6 917 12085.5 0.995 GSM6862393: TRAMPTIM3_mouse_methylation; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.