Mouse methylome studies SRP401089 Track Settings
 
Dual gene activating and repressive functions of TET1 in germ layer lineage bifurcation distinguished by genomic context and dependence on 5-methylcytosine oxidation [oxWGBS] [CM59, CM69, KO1, KO15, WT34, WT7, WT70, WT72]

Track collection: Mouse methylome studies

+  All tracks in this collection (559)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX17803019 
SRX17803020 
SRX17803021 
SRX17803022 
SRX17803023 
SRX17803024 
SRX17803025 
SRX17803026 
SRX17803027 
SRX17803028 
SRX17803029 
SRX17803030 
SRX17803031 
SRX17803032 
SRX17803033 
SRX17803034 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX17803019  HMR  CM59 / SRX17803019 (HMR)   Data format 
hide
 Configure
 SRX17803019  CpG methylation  CM59 / SRX17803019 (CpG methylation)   Data format 
hide
 SRX17803020  HMR  KO1 / SRX17803020 (HMR)   Data format 
hide
 Configure
 SRX17803020  CpG methylation  KO1 / SRX17803020 (CpG methylation)   Data format 
hide
 SRX17803021  HMR  WT70 / SRX17803021 (HMR)   Data format 
hide
 Configure
 SRX17803021  CpG methylation  WT70 / SRX17803021 (CpG methylation)   Data format 
hide
 SRX17803022  HMR  KO15 / SRX17803022 (HMR)   Data format 
hide
 Configure
 SRX17803022  CpG methylation  KO15 / SRX17803022 (CpG methylation)   Data format 
hide
 SRX17803023  HMR  WT7 / SRX17803023 (HMR)   Data format 
hide
 Configure
 SRX17803023  CpG methylation  WT7 / SRX17803023 (CpG methylation)   Data format 
hide
 SRX17803024  HMR  CM69 / SRX17803024 (HMR)   Data format 
hide
 Configure
 SRX17803024  CpG methylation  CM69 / SRX17803024 (CpG methylation)   Data format 
hide
 SRX17803025  HMR  KO15 / SRX17803025 (HMR)   Data format 
hide
 Configure
 SRX17803025  CpG methylation  KO15 / SRX17803025 (CpG methylation)   Data format 
hide
 SRX17803026  HMR  WT34 / SRX17803026 (HMR)   Data format 
hide
 Configure
 SRX17803026  CpG methylation  WT34 / SRX17803026 (CpG methylation)   Data format 
hide
 SRX17803027  HMR  WT70 / SRX17803027 (HMR)   Data format 
hide
 Configure
 SRX17803027  CpG methylation  WT70 / SRX17803027 (CpG methylation)   Data format 
hide
 SRX17803028  HMR  CM59 / SRX17803028 (HMR)   Data format 
hide
 Configure
 SRX17803028  CpG methylation  CM59 / SRX17803028 (CpG methylation)   Data format 
hide
 SRX17803029  HMR  WT72 / SRX17803029 (HMR)   Data format 
hide
 Configure
 SRX17803029  CpG methylation  WT72 / SRX17803029 (CpG methylation)   Data format 
hide
 SRX17803030  HMR  WT72 / SRX17803030 (HMR)   Data format 
hide
 Configure
 SRX17803030  CpG methylation  WT72 / SRX17803030 (CpG methylation)   Data format 
hide
 SRX17803031  HMR  CM69 / SRX17803031 (HMR)   Data format 
hide
 Configure
 SRX17803031  CpG methylation  CM69 / SRX17803031 (CpG methylation)   Data format 
hide
 SRX17803032  HMR  KO1 / SRX17803032 (HMR)   Data format 
hide
 Configure
 SRX17803032  CpG methylation  KO1 / SRX17803032 (CpG methylation)   Data format 
hide
 SRX17803033  HMR  KO1 / SRX17803033 (HMR)   Data format 
hide
 Configure
 SRX17803033  CpG methylation  KO1 / SRX17803033 (CpG methylation)   Data format 
hide
 SRX17803034  HMR  KO15 / SRX17803034 (HMR)   Data format 
hide
 Configure
 SRX17803034  CpG methylation  KO15 / SRX17803034 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Dual gene activating and repressive functions of TET1 in germ layer lineage bifurcation distinguished by genomic context and dependence on 5-methylcytosine oxidation [oxWGBS]
SRA: SRP401089
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX17803019 CM59 0.702 8.2 25431 1133.2 398 1086.5 520 18052.4 0.979 GSM6616451: BS - CM59 - day 2; Mus musculus; Bisulfite-Seq
SRX17803020 KO1 0.811 8.0 27936 1173.1 169 1079.0 837 16885.4 0.979 GSM6616453: BS - KO1 - day 2; Mus musculus; Bisulfite-Seq
SRX17803021 WT70 0.806 8.1 27582 1197.4 188 976.9 924 14699.8 0.980 GSM6616455: BS - WT70 - day 2; Mus musculus; Bisulfite-Seq
SRX17803022 KO15 0.807 8.9 24717 1131.9 243 1070.2 778 15589.7 0.984 GSM6616462: oxBS - KO15 - day 5 + XAV; Mus musculus; Bisulfite-Seq
SRX17803023 WT7 0.787 7.8 29465 1155.3 240 3022.3 929 14002.3 0.987 GSM6616464: oxBS - WT7 - day 5 + XAV; Mus musculus; Bisulfite-Seq
SRX17803024 CM69 0.816 7.8 25579 1168.6 158 1000.3 1155 13752.2 0.980 GSM6616452: BS - CM69 - day 2; Mus musculus; Bisulfite-Seq
SRX17803025 KO15 0.698 7.1 27373 1153.6 350 1209.2 734 16252.5 0.978 GSM6616454: BS - KO15 - day 2; Mus musculus; Bisulfite-Seq
SRX17803026 WT34 0.794 6.9 28525 1193.0 163 1076.7 901 14075.8 0.986 GSM6616463: oxBS - WT34 - day 5 + XAV; Mus musculus; Bisulfite-Seq
SRX17803027 WT70 0.786 7.1 27830 1202.4 177 1053.8 1009 14136.3 0.980 GSM6616465: oxBS - WT70 - day 2; Mus musculus; Bisulfite-Seq
SRX17803028 CM59 0.702 6.5 24654 1150.6 391 2181.6 389 21071.5 0.980 GSM6616457: oxBS - CM59 - day 2; Mus musculus; Bisulfite-Seq
SRX17803029 WT72 0.744 4.7 25088 1267.0 286 1258.0 481 20521.3 0.979 GSM6616466: oxBS - WT72 - day 2; Mus musculus; Bisulfite-Seq
SRX17803030 WT72 0.523 12.1 27721 1112.0 731 1777.6 739 17378.2 0.982 GSM6616456: BS - WT72 - day 2; Mus musculus; Bisulfite-Seq
SRX17803031 CM69 0.808 7.0 25339 1167.8 144 1001.3 810 15334.8 0.980 GSM6616458: oxBS - CM69 - day 2; Mus musculus; Bisulfite-Seq
SRX17803032 KO1 0.798 8.6 28200 1163.8 226 1062.5 1051 15657.3 0.979 GSM6616459: oxBS - KO1 - day 2; Mus musculus; Bisulfite-Seq
SRX17803033 KO1 0.810 7.3 23968 1154.3 180 1060.8 759 13738.5 0.984 GSM6616460: oxBS - KO1 - day 5 + XAV; Mus musculus; Bisulfite-Seq
SRX17803034 KO15 0.714 6.5 27013 1166.8 346 1189.4 668 17128.3 0.978 GSM6616461: oxBS - KO15 - day 2; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.