Mouse methylome studies SRP378380 Track Settings
 
WGBS data of enhanced addictive bahavior in male offspring [Brain-Nucleus Accumbens]

Track collection: Mouse methylome studies

+  All tracks in this collection (559)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX15588952 
SRX15588953 
SRX15588954 
SRX15588955 
SRX15588956 
SRX15588957 
SRX15588958 
SRX15588959 
SRX15588960 
SRX15588961 
SRX15588962 
SRX15588963 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX15588952  HMR  Brain-Nucleus Accumbens / SRX15588952 (HMR)   Data format 
hide
 Configure
 SRX15588952  CpG methylation  Brain-Nucleus Accumbens / SRX15588952 (CpG methylation)   Data format 
hide
 SRX15588953  HMR  Brain-Nucleus Accumbens / SRX15588953 (HMR)   Data format 
hide
 Configure
 SRX15588953  CpG methylation  Brain-Nucleus Accumbens / SRX15588953 (CpG methylation)   Data format 
hide
 SRX15588954  HMR  Brain-Nucleus Accumbens / SRX15588954 (HMR)   Data format 
hide
 Configure
 SRX15588954  CpG methylation  Brain-Nucleus Accumbens / SRX15588954 (CpG methylation)   Data format 
hide
 SRX15588955  HMR  Brain-Nucleus Accumbens / SRX15588955 (HMR)   Data format 
hide
 Configure
 SRX15588955  CpG methylation  Brain-Nucleus Accumbens / SRX15588955 (CpG methylation)   Data format 
hide
 SRX15588956  HMR  Brain-Nucleus Accumbens / SRX15588956 (HMR)   Data format 
hide
 Configure
 SRX15588956  CpG methylation  Brain-Nucleus Accumbens / SRX15588956 (CpG methylation)   Data format 
hide
 SRX15588957  HMR  Brain-Nucleus Accumbens / SRX15588957 (HMR)   Data format 
hide
 Configure
 SRX15588957  CpG methylation  Brain-Nucleus Accumbens / SRX15588957 (CpG methylation)   Data format 
hide
 SRX15588958  HMR  Brain-Nucleus Accumbens / SRX15588958 (HMR)   Data format 
hide
 Configure
 SRX15588958  CpG methylation  Brain-Nucleus Accumbens / SRX15588958 (CpG methylation)   Data format 
hide
 SRX15588959  HMR  Brain-Nucleus Accumbens / SRX15588959 (HMR)   Data format 
hide
 Configure
 SRX15588959  CpG methylation  Brain-Nucleus Accumbens / SRX15588959 (CpG methylation)   Data format 
hide
 SRX15588960  HMR  Brain-Nucleus Accumbens / SRX15588960 (HMR)   Data format 
hide
 Configure
 SRX15588960  CpG methylation  Brain-Nucleus Accumbens / SRX15588960 (CpG methylation)   Data format 
hide
 SRX15588961  HMR  Brain-Nucleus Accumbens / SRX15588961 (HMR)   Data format 
hide
 Configure
 SRX15588961  CpG methylation  Brain-Nucleus Accumbens / SRX15588961 (CpG methylation)   Data format 
hide
 SRX15588962  HMR  Brain-Nucleus Accumbens / SRX15588962 (HMR)   Data format 
hide
 Configure
 SRX15588962  CpG methylation  Brain-Nucleus Accumbens / SRX15588962 (CpG methylation)   Data format 
hide
 SRX15588963  HMR  Brain-Nucleus Accumbens / SRX15588963 (HMR)   Data format 
hide
 Configure
 SRX15588963  CpG methylation  Brain-Nucleus Accumbens / SRX15588963 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: WGBS data of enhanced addictive bahavior in male offspring
SRA: SRP378380
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX15588952 Brain-Nucleus Accumbens 0.785 13.9 42300 1160.5 2802 853.4 3655 9721.7 0.983 WGBS of mus musculus:male adult NAc
SRX15588953 Brain-Nucleus Accumbens 0.793 12.3 40660 1177.1 2098 870.2 3725 9462.0 0.983 WGBS of mus musculus:male adult NAc
SRX15588954 Brain-Nucleus Accumbens 0.795 15.5 44122 1184.8 2887 853.8 3966 9991.7 0.977 WGBS of mus musculus:male adult NAc
SRX15588955 Brain-Nucleus Accumbens 0.800 15.3 41253 1174.1 2843 846.8 3487 9814.4 0.980 WGBS of mus musculus:male adult NAc
SRX15588956 Brain-Nucleus Accumbens 0.763 12.7 43868 1151.1 4229 876.0 2169 13363.2 0.983 WGBS of mus musculus:male adult NAc
SRX15588957 Brain-Nucleus Accumbens 0.786 13.9 40435 1177.4 3276 966.6 3652 9000.7 0.983 WGBS of mus musculus:male adult NAc
SRX15588958 Brain-Nucleus Accumbens 0.793 13.3 42343 1161.1 2311 863.8 3800 9180.6 0.983 WGBS of mus musculus:male adult NAc
SRX15588959 Brain-Nucleus Accumbens 0.785 12.9 39977 1170.4 3172 845.0 3553 8809.2 0.985 WGBS of mus musculus:male adult NAc
SRX15588960 Brain-Nucleus Accumbens 0.800 16.0 41259 1211.5 2759 847.5 3654 10385.5 0.970 WGBS of mus musculus:male adult NAc
SRX15588961 Brain-Nucleus Accumbens 0.796 15.1 43979 1203.1 2931 851.8 3788 10756.5 0.973 WGBS of mus musculus:male adult NAc
SRX15588962 Brain-Nucleus Accumbens 0.799 16.1 42610 1201.8 2915 840.2 3886 10177.0 0.971 WGBS of mus musculus:male adult NAc
SRX15588963 Brain-Nucleus Accumbens 0.792 15.9 42096 1196.8 3853 831.2 3550 9796.4 0.973 WGBS of mus musculus:male adult NAc

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.