Mouse methylome studies SRP364004 Track Settings
 
Transcriptional regulation of the thymus master regulator Foxn1 [WGBS] [Thymus Epithelial Cell Type 1, Thymus Epithelial Cell Type 2, Thymus Epithelial Cell Type 3, Thymus Epithelial Cell Type 4, Type II Airway Epithelial Cells]

Track collection: Mouse methylome studies

+  All tracks in this collection (559)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX14462283 
SRX14462284 
SRX14462285 
SRX14462286 
SRX14462287 
SRX14462288 
SRX14462289 
SRX14462290 
SRX14462291 
SRX14462292 
SRX14462293 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX14462283  HMR  Type II Airway Epithelial Cells / SRX14462283 (HMR)   Data format 
hide
 Configure
 SRX14462283  CpG methylation  Type II Airway Epithelial Cells / SRX14462283 (CpG methylation)   Data format 
hide
 SRX14462284  HMR  Type II Airway Epithelial Cells / SRX14462284 (HMR)   Data format 
hide
 Configure
 SRX14462284  CpG methylation  Type II Airway Epithelial Cells / SRX14462284 (CpG methylation)   Data format 
hide
 SRX14462285  HMR  Type II Airway Epithelial Cells / SRX14462285 (HMR)   Data format 
hide
 Configure
 SRX14462285  CpG methylation  Type II Airway Epithelial Cells / SRX14462285 (CpG methylation)   Data format 
hide
 SRX14462286  HMR  Thymus Epithelial Cell Type 1 / SRX14462286 (HMR)   Data format 
hide
 Configure
 SRX14462286  CpG methylation  Thymus Epithelial Cell Type 1 / SRX14462286 (CpG methylation)   Data format 
hide
 SRX14462287  HMR  Thymus Epithelial Cell Type 1 / SRX14462287 (HMR)   Data format 
hide
 Configure
 SRX14462287  CpG methylation  Thymus Epithelial Cell Type 1 / SRX14462287 (CpG methylation)   Data format 
hide
 SRX14462288  HMR  Thymus Epithelial Cell Type 2 / SRX14462288 (HMR)   Data format 
hide
 Configure
 SRX14462288  CpG methylation  Thymus Epithelial Cell Type 2 / SRX14462288 (CpG methylation)   Data format 
hide
 SRX14462289  HMR  Thymus Epithelial Cell Type 2 / SRX14462289 (HMR)   Data format 
hide
 Configure
 SRX14462289  CpG methylation  Thymus Epithelial Cell Type 2 / SRX14462289 (CpG methylation)   Data format 
hide
 SRX14462290  HMR  Thymus Epithelial Cell Type 3 / SRX14462290 (HMR)   Data format 
hide
 Configure
 SRX14462290  CpG methylation  Thymus Epithelial Cell Type 3 / SRX14462290 (CpG methylation)   Data format 
hide
 SRX14462291  HMR  Thymus Epithelial Cell Type 3 / SRX14462291 (HMR)   Data format 
hide
 Configure
 SRX14462291  CpG methylation  Thymus Epithelial Cell Type 3 / SRX14462291 (CpG methylation)   Data format 
hide
 SRX14462292  HMR  Thymus Epithelial Cell Type 4 / SRX14462292 (HMR)   Data format 
hide
 Configure
 SRX14462292  CpG methylation  Thymus Epithelial Cell Type 4 / SRX14462292 (CpG methylation)   Data format 
hide
 SRX14462293  HMR  Thymus Epithelial Cell Type 4 / SRX14462293 (HMR)   Data format 
hide
 Configure
 SRX14462293  CpG methylation  Thymus Epithelial Cell Type 4 / SRX14462293 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Transcriptional regulation of the thymus master regulator Foxn1 [WGBS]
SRA: SRP364004
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX14462283 Type II Airway Epithelial Cells 0.654 12.7 68974 1039.6 308 1014.7 2521 9697.5 0.992 GSM5952737: ATII_WT_1; Mus musculus; Bisulfite-Seq
SRX14462284 Type II Airway Epithelial Cells 0.648 15.7 74843 986.2 215 1060.5 2569 9842.4 0.993 GSM5952738: ATII_WT_2; Mus musculus; Bisulfite-Seq
SRX14462285 Type II Airway Epithelial Cells 0.670 8.4 60452 1178.3 171 1021.3 1747 13794.1 0.987 GSM5952739: ATII_WT_3; Mus musculus; Bisulfite-Seq
SRX14462286 Thymus Epithelial Cell Type 1 0.685 9.0 67182 1074.8 214 1027.4 1317 13455.7 0.992 GSM5952740: mTEC1_rep1; Mus musculus; Bisulfite-Seq
SRX14462287 Thymus Epithelial Cell Type 1 0.685 9.6 70166 1067.1 215 1034.1 1590 12907.2 0.992 GSM5952741: mTEC1_rep2; Mus musculus; Bisulfite-Seq
SRX14462288 Thymus Epithelial Cell Type 2 0.673 9.8 65337 1103.9 213 1103.2 1236 13641.8 0.992 GSM5952742: mTEC2_rep2; Mus musculus; Bisulfite-Seq
SRX14462289 Thymus Epithelial Cell Type 2 0.678 8.4 58949 1174.7 218 1006.8 1339 13176.8 0.991 GSM5952743: mTEC2_rep3; Mus musculus; Bisulfite-Seq
SRX14462290 Thymus Epithelial Cell Type 3 0.721 9.0 34889 1170.6 850 858.6 1380 11615.3 0.992 GSM5952744: mTEC3_rep1; Mus musculus; Bisulfite-Seq
SRX14462291 Thymus Epithelial Cell Type 3 0.717 8.0 37951 1211.0 443 859.6 1448 12089.1 0.991 GSM5952745: mTEC3_rep2+B36; Mus musculus; Bisulfite-Seq
SRX14462292 Thymus Epithelial Cell Type 4 0.676 8.5 60261 1244.4 210 1010.4 1744 15644.0 0.990 GSM5952746: mTEC4_rep1; Mus musculus; Bisulfite-Seq
SRX14462293 Thymus Epithelial Cell Type 4 0.690 9.1 62613 1230.7 228 1017.8 1578 16851.2 0.990 GSM5952747: mTEC4_rep2; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.