Mouse methylome studies SRP261529 Track Settings
 
An activity-mediated transition in transcription in early postnatal neurons [BS-seq] [Cortex]

Track collection: Mouse methylome studies

+  All tracks in this collection (559)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX8339978 
SRX8339979 
SRX8339980 
SRX8339981 
SRX8339986 
SRX8339987 
SRX8339988 
SRX8339989 
SRX8339990 
SRX8339992 
SRX8339993 
SRX8339994 
SRX8339996 
SRX8339997 
SRX8339998 
SRX8339999 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX8339978  HMR  Cortex / SRX8339978 (HMR)   Data format 
hide
 Configure
 SRX8339978  CpG methylation  Cortex / SRX8339978 (CpG methylation)   Data format 
hide
 SRX8339979  HMR  Cortex / SRX8339979 (HMR)   Data format 
hide
 Configure
 SRX8339979  CpG methylation  Cortex / SRX8339979 (CpG methylation)   Data format 
hide
 SRX8339980  HMR  Cortex / SRX8339980 (HMR)   Data format 
hide
 Configure
 SRX8339980  CpG methylation  Cortex / SRX8339980 (CpG methylation)   Data format 
hide
 SRX8339981  HMR  Cortex / SRX8339981 (HMR)   Data format 
hide
 Configure
 SRX8339981  CpG methylation  Cortex / SRX8339981 (CpG methylation)   Data format 
hide
 SRX8339986  HMR  Cortex / SRX8339986 (HMR)   Data format 
hide
 Configure
 SRX8339986  CpG methylation  Cortex / SRX8339986 (CpG methylation)   Data format 
hide
 SRX8339987  HMR  Cortex / SRX8339987 (HMR)   Data format 
hide
 Configure
 SRX8339987  CpG methylation  Cortex / SRX8339987 (CpG methylation)   Data format 
hide
 SRX8339988  HMR  Cortex / SRX8339988 (HMR)   Data format 
hide
 Configure
 SRX8339988  CpG methylation  Cortex / SRX8339988 (CpG methylation)   Data format 
hide
 SRX8339989  HMR  Cortex / SRX8339989 (HMR)   Data format 
hide
 Configure
 SRX8339989  CpG methylation  Cortex / SRX8339989 (CpG methylation)   Data format 
hide
 SRX8339990  HMR  Cortex / SRX8339990 (HMR)   Data format 
hide
 Configure
 SRX8339990  CpG methylation  Cortex / SRX8339990 (CpG methylation)   Data format 
hide
 SRX8339992  HMR  Cortex / SRX8339992 (HMR)   Data format 
hide
 Configure
 SRX8339992  CpG methylation  Cortex / SRX8339992 (CpG methylation)   Data format 
hide
 SRX8339993  HMR  Cortex / SRX8339993 (HMR)   Data format 
hide
 Configure
 SRX8339993  CpG methylation  Cortex / SRX8339993 (CpG methylation)   Data format 
hide
 SRX8339994  HMR  Cortex / SRX8339994 (HMR)   Data format 
hide
 Configure
 SRX8339994  CpG methylation  Cortex / SRX8339994 (CpG methylation)   Data format 
hide
 SRX8339996  HMR  Cortex / SRX8339996 (HMR)   Data format 
hide
 Configure
 SRX8339996  CpG methylation  Cortex / SRX8339996 (CpG methylation)   Data format 
hide
 SRX8339997  HMR  Cortex / SRX8339997 (HMR)   Data format 
hide
 Configure
 SRX8339997  CpG methylation  Cortex / SRX8339997 (CpG methylation)   Data format 
hide
 SRX8339998  HMR  Cortex / SRX8339998 (HMR)   Data format 
hide
 Configure
 SRX8339998  CpG methylation  Cortex / SRX8339998 (CpG methylation)   Data format 
hide
 SRX8339999  HMR  Cortex / SRX8339999 (HMR)   Data format 
hide
 Configure
 SRX8339999  CpG methylation  Cortex / SRX8339999 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: An activity-mediated transition in transcription in early postnatal neurons [BS-seq]
SRA: SRP261529
GEO: GSE150534
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX8339978 Cortex 0.829 6.1 43438 1320.8 28 1185.8 1427 29685.1 0.970 GSM4551926: 15wk_CTX_SSTcre_Dnmt3aWT_Sun1IP_BS; Mus musculus; Bisulfite-Seq
SRX8339979 Cortex 0.804 6.6 49143 1372.7 19 1188.3 2026 19741.5 0.982 GSM4551927: 15wk_CTX_SSTcre_Dnmt3aKO_Sun1IP_BS; Mus musculus; Bisulfite-Seq
SRX8339980 Cortex 0.819 7.5 50989 1212.0 28 1224.6 1974 18815.2 0.977 GSM4551928: 13wk_CTX_VIPcre_Dnmt3aWT_Sun1IP_BS; Mus musculus; Bisulfite-Seq
SRX8339981 Cortex 0.779 4.7 48880 1485.9 5 1060.0 1238 28296.1 0.986 GSM4551929: 13wk_CTX_VIPcre_Dnmt3aKO_Sun1IP_BS; Mus musculus; Bisulfite-Seq
SRX8339986 Cortex 0.769 9.3 52307 1232.8 47 1241.7 1624 13311.5 0.985 GSM4551934: 1wk_CTX_SSTcre_Sun1IP_BS_rep1; Mus musculus; Bisulfite-Seq
SRX8339987 Cortex 0.770 7.6 46916 1293.8 41 1217.7 1472 13736.0 0.985 GSM4551935: 1wk_CTX_SSTcre_Sun1IP_BS_rep2; Mus musculus; Bisulfite-Seq
SRX8339988 Cortex 0.739 7.4 34394 1462.5 35 926.4 1077 13733.3 0.982 GSM4551936: 1wk_CTX_VIPcre_Sun1IP_BS_rep1; Mus musculus; Bisulfite-Seq
SRX8339989 Cortex 0.749 7.6 36644 1432.3 37 1223.7 1250 13336.8 0.983 GSM4551937: 1wk_CTX_VIPcre_Sun1IP_BS_rep2; Mus musculus; Bisulfite-Seq
SRX8339990 Cortex 0.788 3.3 39631 1684.6 10 1749.6 438 39198.4 0.991 GSM4551938: P10_CTX_VIPcre_Sun1IP_BS_rep1; Mus musculus; Bisulfite-Seq
SRX8339992 Cortex 0.760 11.0 53740 1146.8 60 1378.1 1527 13403.5 0.991 GSM4551940: P10_CTX_SSTcre_Sun1IP_BS; Mus musculus; Bisulfite-Seq
SRX8339993 Cortex 0.819 2.8 29109 1794.3 16 1385.5 569 48186.5 0.981 GSM4551941: P13_CTX_SSTcre_Sun1IP_BS_rep1; Mus musculus; Bisulfite-Seq
SRX8339994 Cortex 0.820 3.3 34405 1661.3 16 1752.6 862 35181.3 0.981 GSM4551942: P13_CTX_SSTcre_Sun1IP_BS_rep2; Mus musculus; Bisulfite-Seq
SRX8339996 Cortex 0.801 2.4 30052 1931.6 24 1676.0 556 49893.5 0.988 GSM4551944: P13_CTX_VIPcre_Sun1IP_BS_rep2; Mus musculus; Bisulfite-Seq
SRX8339997 Cortex 0.808 12.7 56284 1151.9 102 1167.7 4316 11750.3 0.970 GSM4551945: 3wk_CTX_VIPcre_Sun1IP_BS; Mus musculus; Bisulfite-Seq
SRX8339998 Cortex 0.822 9.0 49743 1187.4 77 1097.7 2220 18187.3 0.969 GSM4551946: 8wk_CTX_SSTcre_Sun1IP_BS_rep1; Mus musculus; Bisulfite-Seq
SRX8339999 Cortex 0.823 9.1 50242 1188.1 74 1168.7 2376 19001.0 0.969 GSM4551947: 8wk_CTX_SSTcre_Sun1IP_BS_rep2; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.