Mouse methylome studies SRP244650 Track Settings
 
Paradoxical whole genome DNA methylation dynamics of Decitabine in chronic low-dose exposure in mice [Liver, Testes]

Track collection: Mouse methylome studies

+  All tracks in this collection (559)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX7627255 
SRX7627256 
SRX7627257 
SRX7627258 
SRX7627259 
SRX7627260 
SRX7627261 
SRX7627262 
SRX7627263 
SRX7627264 
SRX7627265 
SRX7627266 
SRX7627267 
SRX7627268 
SRX7627269 
SRX7627270 
SRX7627271 
SRX7627272 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX7627255  HMR  Liver / SRX7627255 (HMR)   Data format 
hide
 Configure
 SRX7627255  CpG methylation  Liver / SRX7627255 (CpG methylation)   Data format 
hide
 SRX7627256  HMR  Testes / SRX7627256 (HMR)   Data format 
hide
 Configure
 SRX7627256  CpG methylation  Testes / SRX7627256 (CpG methylation)   Data format 
hide
 SRX7627257  HMR  Liver / SRX7627257 (HMR)   Data format 
hide
 Configure
 SRX7627257  CpG methylation  Liver / SRX7627257 (CpG methylation)   Data format 
hide
 SRX7627258  HMR  Testes / SRX7627258 (HMR)   Data format 
hide
 Configure
 SRX7627258  CpG methylation  Testes / SRX7627258 (CpG methylation)   Data format 
hide
 SRX7627259  HMR  Liver / SRX7627259 (HMR)   Data format 
hide
 Configure
 SRX7627259  CpG methylation  Liver / SRX7627259 (CpG methylation)   Data format 
hide
 SRX7627260  HMR  Testes / SRX7627260 (HMR)   Data format 
hide
 Configure
 SRX7627260  CpG methylation  Testes / SRX7627260 (CpG methylation)   Data format 
hide
 SRX7627261  HMR  Liver / SRX7627261 (HMR)   Data format 
hide
 Configure
 SRX7627261  CpG methylation  Liver / SRX7627261 (CpG methylation)   Data format 
hide
 SRX7627262  HMR  Testes / SRX7627262 (HMR)   Data format 
hide
 Configure
 SRX7627262  CpG methylation  Testes / SRX7627262 (CpG methylation)   Data format 
hide
 SRX7627263  HMR  Liver / SRX7627263 (HMR)   Data format 
hide
 Configure
 SRX7627263  CpG methylation  Liver / SRX7627263 (CpG methylation)   Data format 
hide
 SRX7627264  HMR  Testes / SRX7627264 (HMR)   Data format 
hide
 Configure
 SRX7627264  CpG methylation  Testes / SRX7627264 (CpG methylation)   Data format 
hide
 SRX7627265  HMR  Liver / SRX7627265 (HMR)   Data format 
hide
 Configure
 SRX7627265  CpG methylation  Liver / SRX7627265 (CpG methylation)   Data format 
hide
 SRX7627266  HMR  Testes / SRX7627266 (HMR)   Data format 
hide
 Configure
 SRX7627266  CpG methylation  Testes / SRX7627266 (CpG methylation)   Data format 
hide
 SRX7627267  HMR  Liver / SRX7627267 (HMR)   Data format 
hide
 Configure
 SRX7627267  CpG methylation  Liver / SRX7627267 (CpG methylation)   Data format 
hide
 SRX7627268  HMR  Testes / SRX7627268 (HMR)   Data format 
hide
 Configure
 SRX7627268  CpG methylation  Testes / SRX7627268 (CpG methylation)   Data format 
hide
 SRX7627269  HMR  Liver / SRX7627269 (HMR)   Data format 
hide
 Configure
 SRX7627269  CpG methylation  Liver / SRX7627269 (CpG methylation)   Data format 
hide
 SRX7627270  HMR  Testes / SRX7627270 (HMR)   Data format 
hide
 Configure
 SRX7627270  CpG methylation  Testes / SRX7627270 (CpG methylation)   Data format 
hide
 SRX7627271  HMR  Liver / SRX7627271 (HMR)   Data format 
hide
 Configure
 SRX7627271  CpG methylation  Liver / SRX7627271 (CpG methylation)   Data format 
hide
 SRX7627272  HMR  Testes / SRX7627272 (HMR)   Data format 
hide
 Configure
 SRX7627272  CpG methylation  Testes / SRX7627272 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Paradoxical whole genome DNA methylation dynamics of Decitabine in chronic low-dose exposure in mice
SRA: SRP244650
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX7627255 Liver 0.684 29.9 61403 1043.8 507 973.3 2953 10516.8 0.996 181B_015mgkg_Liver
SRX7627256 Testes 0.700 26.5 59996 1636.2 6527 843.3 3959 33087.5 0.997 181B_015mgkg_Testes
SRX7627257 Liver 0.723 22.0 51788 1266.0 651 962.3 3064 12090.6 0.996 185B_015mgkg_Liver
SRX7627258 Testes 0.688 29.9 66833 1723.6 7013 833.9 3995 35837.4 0.998 185B_015mgkg_Testes
SRX7627259 Liver 0.676 26.2 54370 1147.1 513 964.6 3281 9840.8 0.996 186C_035mgkg_Liver
SRX7627260 Testes 0.645 26.6 63647 1171.4 964 871.9 2764 10087.7 0.997 186C_035mgkg_Testes
SRX7627261 Liver 0.706 26.5 58460 1069.4 541 964.9 3075 10322.9 0.998 188A_Control_Liver
SRX7627262 Testes 0.715 26.4 76315 1897.1 1676 780.2 4479 43306.7 0.998 188A_Control_Testes
SRX7627263 Liver 0.683 26.7 58302 1044.4 524 938.3 2723 11017.7 0.997 188C_Control_Liver
SRX7627264 Testes 0.738 24.8 76023 1873.7 1296 768.1 4652 41546.1 0.998 188C_Control_Testes
SRX7627265 Liver 0.672 30.1 61032 1069.5 549 930.4 3328 10096.6 0.997 181H_035mgkg_Liver
SRX7627266 Testes 0.648 27.6 66708 1180.4 899 869.8 2690 10319.2 0.997 181H_035mgkg_Testes
SRX7627267 Liver 0.710 22.7 50701 1166.1 497 966.1 2895 11427.9 0.997 183E_Control_Liver
SRX7627268 Testes 0.742 26.1 70136 1939.4 3281 801.2 4139 46172.7 0.996 183E_Control_Testes
SRX7627269 Liver 0.689 28.5 60041 1069.2 510 950.6 2797 10678.4 0.997 184E_035mgkg_Liver
SRX7627270 Testes 0.682 34.2 61604 1257.9 845 915.5 2368 11362.6 0.997 184E_035mgkg_Testes
SRX7627271 Liver 0.684 26.7 59702 1014.2 502 948.9 2989 10006.9 0.998 185A_015mgkg_Liver
SRX7627272 Testes 0.675 37.7 63607 1635.0 10429 855.5 4106 32197.8 0.997 185A_015mgkg_Testes

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.