Mouse methylome studies SRP123210 Track Settings
 
Genetics, sex and life experience influence DNA methylation in the mouse [Liver]

Track collection: Mouse methylome studies

+  All tracks in this collection (559)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX3347166 
SRX3347167 
SRX3347168 
SRX3347169 
SRX3347170 
SRX3347171 
SRX3347172 
SRX3347173 
SRX3347174 
SRX3347175 
SRX3347176 
SRX3347177 
SRX3347178 
SRX3347179 
SRX3347180 
SRX3347181 
SRX3347182 
SRX3347183 
SRX3347184 
SRX3347185 
SRX3347186 
SRX3347187 
SRX3347188 
SRX3347189 
experiment
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX3347166  HMR  Liver / SRX3347166 (HMR)   Data format 
hide
 Configure
 SRX3347166  CpG methylation  Liver / SRX3347166 (CpG methylation)   Data format 
hide
 SRX3347167  HMR  Liver / SRX3347167 (HMR)   Data format 
hide
 Configure
 SRX3347167  CpG methylation  Liver / SRX3347167 (CpG methylation)   Data format 
hide
 SRX3347168  HMR  Liver / SRX3347168 (HMR)   Data format 
hide
 Configure
 SRX3347168  CpG methylation  Liver / SRX3347168 (CpG methylation)   Data format 
hide
 SRX3347169  HMR  Liver / SRX3347169 (HMR)   Data format 
hide
 Configure
 SRX3347169  CpG methylation  Liver / SRX3347169 (CpG methylation)   Data format 
hide
 SRX3347170  HMR  Liver / SRX3347170 (HMR)   Data format 
hide
 Configure
 SRX3347170  CpG methylation  Liver / SRX3347170 (CpG methylation)   Data format 
hide
 SRX3347171  HMR  Liver / SRX3347171 (HMR)   Data format 
hide
 Configure
 SRX3347171  CpG methylation  Liver / SRX3347171 (CpG methylation)   Data format 
hide
 SRX3347172  HMR  Liver / SRX3347172 (HMR)   Data format 
hide
 Configure
 SRX3347172  CpG methylation  Liver / SRX3347172 (CpG methylation)   Data format 
hide
 SRX3347173  HMR  Liver / SRX3347173 (HMR)   Data format 
hide
 Configure
 SRX3347173  CpG methylation  Liver / SRX3347173 (CpG methylation)   Data format 
hide
 SRX3347174  HMR  Liver / SRX3347174 (HMR)   Data format 
hide
 Configure
 SRX3347174  CpG methylation  Liver / SRX3347174 (CpG methylation)   Data format 
hide
 SRX3347175  HMR  Liver / SRX3347175 (HMR)   Data format 
hide
 Configure
 SRX3347175  CpG methylation  Liver / SRX3347175 (CpG methylation)   Data format 
hide
 SRX3347176  HMR  Liver / SRX3347176 (HMR)   Data format 
hide
 Configure
 SRX3347176  CpG methylation  Liver / SRX3347176 (CpG methylation)   Data format 
hide
 SRX3347177  HMR  Liver / SRX3347177 (HMR)   Data format 
hide
 Configure
 SRX3347177  CpG methylation  Liver / SRX3347177 (CpG methylation)   Data format 
hide
 SRX3347178  HMR  Liver / SRX3347178 (HMR)   Data format 
hide
 Configure
 SRX3347178  CpG methylation  Liver / SRX3347178 (CpG methylation)   Data format 
hide
 SRX3347179  HMR  Liver / SRX3347179 (HMR)   Data format 
hide
 Configure
 SRX3347179  CpG methylation  Liver / SRX3347179 (CpG methylation)   Data format 
hide
 SRX3347180  HMR  Liver / SRX3347180 (HMR)   Data format 
hide
 Configure
 SRX3347180  CpG methylation  Liver / SRX3347180 (CpG methylation)   Data format 
hide
 SRX3347181  HMR  Liver / SRX3347181 (HMR)   Data format 
hide
 Configure
 SRX3347181  CpG methylation  Liver / SRX3347181 (CpG methylation)   Data format 
hide
 SRX3347182  HMR  Liver / SRX3347182 (HMR)   Data format 
hide
 Configure
 SRX3347182  CpG methylation  Liver / SRX3347182 (CpG methylation)   Data format 
hide
 SRX3347183  HMR  Liver / SRX3347183 (HMR)   Data format 
hide
 Configure
 SRX3347183  CpG methylation  Liver / SRX3347183 (CpG methylation)   Data format 
hide
 SRX3347184  HMR  Liver / SRX3347184 (HMR)   Data format 
hide
 Configure
 SRX3347184  CpG methylation  Liver / SRX3347184 (CpG methylation)   Data format 
hide
 SRX3347185  HMR  Liver / SRX3347185 (HMR)   Data format 
hide
 Configure
 SRX3347185  CpG methylation  Liver / SRX3347185 (CpG methylation)   Data format 
hide
 SRX3347186  HMR  Liver / SRX3347186 (HMR)   Data format 
hide
 Configure
 SRX3347186  CpG methylation  Liver / SRX3347186 (CpG methylation)   Data format 
hide
 SRX3347187  HMR  Liver / SRX3347187 (HMR)   Data format 
hide
 Configure
 SRX3347187  CpG methylation  Liver / SRX3347187 (CpG methylation)   Data format 
hide
 SRX3347188  HMR  Liver / SRX3347188 (HMR)   Data format 
hide
 Configure
 SRX3347188  CpG methylation  Liver / SRX3347188 (CpG methylation)   Data format 
hide
 SRX3347189  HMR  Liver / SRX3347189 (HMR)   Data format 
hide
 Configure
 SRX3347189  CpG methylation  Liver / SRX3347189 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Genetics, sex and life experience influence DNA methylation in the mouse
SRA: SRP123210
GEO: GSE106379
Pubmed: 30659182

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX3347166 Liver 0.747 36.7 62607 1034.2 712 881.8 3412 10159.5 0.997 GSM2836889: B6_M_1; Mus musculus; Bisulfite-Seq
SRX3347167 Liver 0.753 32.3 61880 1042.0 812 887.1 3179 10542.1 0.996 GSM2836890: B6_M_2; Mus musculus; Bisulfite-Seq
SRX3347168 Liver 0.750 24.0 54987 1087.1 743 854.1 3024 9670.1 0.997 GSM2836891: B6_M_3; Mus musculus; Bisulfite-Seq
SRX3347169 Liver 0.737 36.8 62041 1015.3 818 918.8 2801 9455.4 0.997 GSM2836892: B6_F_1; Mus musculus; Bisulfite-Seq
SRX3347170 Liver 0.742 28.8 61489 1019.3 720 945.2 2712 9517.0 0.997 GSM2836893: B6_F_2; Mus musculus; Bisulfite-Seq
SRX3347171 Liver 0.736 35.1 61455 1017.2 840 937.7 2571 9740.1 0.995 GSM2836894: B6_F_3; Mus musculus; Bisulfite-Seq
SRX3347172 Liver 0.729 33.3 61323 1197.5 557 940.5 3974 14795.3 0.995 GSM2836895: C3_M_1; Mus musculus; Bisulfite-Seq
SRX3347173 Liver 0.736 29.2 62092 1175.5 548 933.3 3694 14927.3 0.996 GSM2836896: C3_M_2; Mus musculus; Bisulfite-Seq
SRX3347174 Liver 0.731 33.6 61650 1171.3 592 973.8 4157 14220.1 0.994 GSM2836897: C3_M_3; Mus musculus; Bisulfite-Seq
SRX3347175 Liver 0.726 36.4 61835 1180.5 656 976.7 3580 15495.5 0.996 GSM2836898: C3_F_1; Mus musculus; Bisulfite-Seq
SRX3347176 Liver 0.736 30.0 59414 1247.7 690 956.1 3728 15858.0 0.994 GSM2836899: C3_F_2; Mus musculus; Bisulfite-Seq
SRX3347177 Liver 0.734 22.8 57736 1245.7 507 1002.1 3549 15391.0 0.996 GSM2836900: C3_F_3; Mus musculus; Bisulfite-Seq
SRX3347178 Liver 0.741 28.4 56142 1066.8 619 930.1 3115 10264.9 0.996 GSM2836901: B6C3F1_M_1; Mus musculus; Bisulfite-Seq
SRX3347179 Liver 0.740 27.2 56593 1043.0 514 967.0 2900 10419.9 0.994 GSM2836902: B6C3F1_M_2; Mus musculus; Bisulfite-Seq
SRX3347180 Liver 0.733 28.6 58733 1026.3 677 914.4 2938 10189.5 0.995 GSM2836903: B6C3F1_M_3; Mus musculus; Bisulfite-Seq
SRX3347181 Liver 0.739 37.6 59026 1024.2 987 930.2 3136 9641.2 0.996 GSM2836904: B6C3F1_F_1; Mus musculus; Bisulfite-Seq
SRX3347182 Liver 0.735 37.3 59145 1021.4 838 937.0 3021 10017.5 0.995 GSM2836905: B6C3F1_F_2; Mus musculus; Bisulfite-Seq
SRX3347183 Liver 0.730 35.8 60407 1005.7 1079 988.4 2738 10386.9 0.995 GSM2836906: B6C3F1_F_3; Mus musculus; Bisulfite-Seq
SRX3347184 Liver 0.741 30.7 59511 1020.2 663 926.7 3375 9690.9 0.996 GSM2836907: C3B6F1_M_1; Mus musculus; Bisulfite-Seq
SRX3347185 Liver 0.741 30.2 55615 1051.6 607 953.4 2957 10219.6 0.995 GSM2836908: C3B6F1_M_2; Mus musculus; Bisulfite-Seq
SRX3347186 Liver 0.743 22.2 52359 1098.5 498 948.1 3355 9473.4 0.997 GSM2836909: C3B6F1_M_3; Mus musculus; Bisulfite-Seq
SRX3347187 Liver 0.735 34.3 55868 1041.5 1034 945.7 3038 9345.2 0.996 GSM2836910: C3B6F1_F_1; Mus musculus; Bisulfite-Seq
SRX3347188 Liver 0.735 33.3 56882 1035.3 714 929.7 2784 9928.7 0.995 GSM2836911: C3B6F1_F_2; Mus musculus; Bisulfite-Seq
SRX3347189 Liver 0.739 26.8 50867 1101.5 912 906.7 2810 9375.5 0.997 GSM2836912: C3B6F1_F_3; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.