Mouse methylome studies SRP077894 Track Settings
 
Single base resolution of the complete 5-mC and 5-hmC cardiac methylome in heart failure [Whole Heart]

Track collection: Mouse methylome studies

+  All tracks in this collection (559)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX1897213 
SRX1897215 
SRX1897223 
SRX1897226 
SRX1897228 
SRX1897231 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX1897213  HMR  Whole Heart / SRX1897213 (HMR)   Data format 
hide
 SRX1897213  AMR  Whole Heart / SRX1897213 (AMR)   Data format 
hide
 SRX1897213  PMD  Whole Heart / SRX1897213 (PMD)   Data format 
hide
 Configure
 SRX1897213  CpG methylation  Whole Heart / SRX1897213 (CpG methylation)   Data format 
hide
 Configure
 SRX1897213  CpG reads  Whole Heart / SRX1897213 (CpG reads)   Data format 
hide
 SRX1897215  HMR  Whole Heart / SRX1897215 (HMR)   Data format 
hide
 SRX1897215  AMR  Whole Heart / SRX1897215 (AMR)   Data format 
hide
 SRX1897215  PMD  Whole Heart / SRX1897215 (PMD)   Data format 
hide
 Configure
 SRX1897215  CpG methylation  Whole Heart / SRX1897215 (CpG methylation)   Data format 
hide
 Configure
 SRX1897215  CpG reads  Whole Heart / SRX1897215 (CpG reads)   Data format 
hide
 SRX1897223  HMR  Whole Heart / SRX1897223 (HMR)   Data format 
hide
 SRX1897223  AMR  Whole Heart / SRX1897223 (AMR)   Data format 
hide
 SRX1897223  PMD  Whole Heart / SRX1897223 (PMD)   Data format 
hide
 Configure
 SRX1897223  CpG methylation  Whole Heart / SRX1897223 (CpG methylation)   Data format 
hide
 Configure
 SRX1897223  CpG reads  Whole Heart / SRX1897223 (CpG reads)   Data format 
hide
 SRX1897226  HMR  Whole Heart / SRX1897226 (HMR)   Data format 
hide
 SRX1897226  AMR  Whole Heart / SRX1897226 (AMR)   Data format 
hide
 SRX1897226  PMD  Whole Heart / SRX1897226 (PMD)   Data format 
hide
 Configure
 SRX1897226  CpG methylation  Whole Heart / SRX1897226 (CpG methylation)   Data format 
hide
 Configure
 SRX1897226  CpG reads  Whole Heart / SRX1897226 (CpG reads)   Data format 
hide
 SRX1897228  HMR  Whole Heart / SRX1897228 (HMR)   Data format 
hide
 SRX1897228  AMR  Whole Heart / SRX1897228 (AMR)   Data format 
hide
 SRX1897228  PMD  Whole Heart / SRX1897228 (PMD)   Data format 
hide
 Configure
 SRX1897228  CpG methylation  Whole Heart / SRX1897228 (CpG methylation)   Data format 
hide
 Configure
 SRX1897228  CpG reads  Whole Heart / SRX1897228 (CpG reads)   Data format 
hide
 SRX1897231  HMR  Whole Heart / SRX1897231 (HMR)   Data format 
hide
 SRX1897231  AMR  Whole Heart / SRX1897231 (AMR)   Data format 
hide
 SRX1897231  PMD  Whole Heart / SRX1897231 (PMD)   Data format 
hide
 Configure
 SRX1897231  CpG methylation  Whole Heart / SRX1897231 (CpG methylation)   Data format 
hide
 Configure
 SRX1897231  CpG reads  Whole Heart / SRX1897231 (CpG reads)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Single base resolution of the complete 5-mC and 5-hmC cardiac methylome in heart failure
SRA: SRP077894
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX1897213 Whole Heart 0.613 22.9 42999 989.4 978 876.0 1881 8842.4 0.996 BS-sequencing of MLP-WT mouse whole heart
SRX1897215 Whole Heart 0.617 23.2 47762 1061.2 1018 861.1 2201 11888.1 0.996 BS-sequencing of MLP-KO mouse whole heart
SRX1897223 Whole Heart 0.593 24.4 43561 1002.4 1334 1156.6 1791 9920.9 0.996 BS-sequencing of MLP-WT mouse whole heart
SRX1897226 Whole Heart 0.617 24.7 42404 1006.2 1659 867.0 1961 9459.5 0.996 BS-sequencing of MLP-WT mouse whole heart
SRX1897228 Whole Heart 0.618 20.8 45804 1072.5 972 860.0 2146 11806.7 0.993 BS-sequencing of MLP-KO mouse whole heart
SRX1897231 Whole Heart 0.606 22.2 48160 1065.3 897 847.2 2233 10734.1 0.996 BS-sequencing of MLP-KO mouse whole heart

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.