Mouse methylome studies SRP033304 Track Settings
 
The complete methylome of hematopoietic stem cells and their immediate progeny [HSC (LSK, CD34-, CD48-, CD150+), MPP (LSK, CD34+, CD48+, CD150-), MPP1 (LSK, CD34+, CD48-, CD150+), MPP2 (LSK, CD34+, CD48+, CD150+)]

Track collection: Mouse methylome studies

+  All tracks in this collection (559)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX383019 
SRX383020 
SRX383021 
SRX383022 
SRX383023 
SRX383024 
SRX383025 
SRX383026 
SRX383027 
SRX383028 
SRX383029 
SRX383030 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX383019  HMR  HSC (LSK, CD34-, CD48-, CD150+) / SRX383019 (HMR)   Data format 
hide
 Configure
 SRX383019  CpG methylation  HSC (LSK, CD34-, CD48-, CD150+) / SRX383019 (CpG methylation)   Data format 
hide
 SRX383020  HMR  HSC (LSK, CD34-, CD48-, CD150+) / SRX383020 (HMR)   Data format 
hide
 Configure
 SRX383020  CpG methylation  HSC (LSK, CD34-, CD48-, CD150+) / SRX383020 (CpG methylation)   Data format 
hide
 SRX383021  HMR  HSC (LSK, CD34-, CD48-, CD150+) / SRX383021 (HMR)   Data format 
hide
 Configure
 SRX383021  CpG methylation  HSC (LSK, CD34-, CD48-, CD150+) / SRX383021 (CpG methylation)   Data format 
hide
 SRX383022  HMR  MPP1 (LSK, CD34+, CD48-, CD150+) / SRX383022 (HMR)   Data format 
hide
 Configure
 SRX383022  CpG methylation  MPP1 (LSK, CD34+, CD48-, CD150+) / SRX383022 (CpG methylation)   Data format 
hide
 SRX383023  HMR  MPP1 (LSK, CD34+, CD48-, CD150+) / SRX383023 (HMR)   Data format 
hide
 Configure
 SRX383023  CpG methylation  MPP1 (LSK, CD34+, CD48-, CD150+) / SRX383023 (CpG methylation)   Data format 
hide
 SRX383024  HMR  MPP1 (LSK, CD34+, CD48-, CD150+) / SRX383024 (HMR)   Data format 
hide
 Configure
 SRX383024  CpG methylation  MPP1 (LSK, CD34+, CD48-, CD150+) / SRX383024 (CpG methylation)   Data format 
hide
 SRX383025  HMR  MPP2 (LSK, CD34+, CD48+, CD150+) / SRX383025 (HMR)   Data format 
hide
 Configure
 SRX383025  CpG methylation  MPP2 (LSK, CD34+, CD48+, CD150+) / SRX383025 (CpG methylation)   Data format 
hide
 SRX383026  HMR  MPP2 (LSK, CD34+, CD48+, CD150+) / SRX383026 (HMR)   Data format 
hide
 Configure
 SRX383026  CpG methylation  MPP2 (LSK, CD34+, CD48+, CD150+) / SRX383026 (CpG methylation)   Data format 
hide
 SRX383027  HMR  MPP2 (LSK, CD34+, CD48+, CD150+) / SRX383027 (HMR)   Data format 
hide
 Configure
 SRX383027  CpG methylation  MPP2 (LSK, CD34+, CD48+, CD150+) / SRX383027 (CpG methylation)   Data format 
hide
 SRX383028  HMR  MPP (LSK, CD34+, CD48+, CD150-) / SRX383028 (HMR)   Data format 
hide
 Configure
 SRX383028  CpG methylation  MPP (LSK, CD34+, CD48+, CD150-) / SRX383028 (CpG methylation)   Data format 
hide
 SRX383029  HMR  MPP (LSK, CD34+, CD48+, CD150-) / SRX383029 (HMR)   Data format 
hide
 Configure
 SRX383029  CpG methylation  MPP (LSK, CD34+, CD48+, CD150-) / SRX383029 (CpG methylation)   Data format 
hide
 SRX383030  HMR  MPP (LSK, CD34+, CD48+, CD150-) / SRX383030 (HMR)   Data format 
hide
 Configure
 SRX383030  CpG methylation  MPP (LSK, CD34+, CD48+, CD150-) / SRX383030 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: The complete methylome of hematopoietic stem cells and their immediate progeny
SRA: SRP033304
GEO: GSE52709
Pubmed: 25158935

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX383019 HSC (LSK, CD34-, CD48-, CD150+) 0.780 11.4 49996 943.3 452 999.2 1800 10725.2 0.992 GSM1274424: HSC_R1; Mus musculus; Bisulfite-Seq
SRX383020 HSC (LSK, CD34-, CD48-, CD150+) 0.772 20.6 60384 846.6 858 994.0 4008 6600.6 0.991 GSM1274425: HSC_R2; Mus musculus; Bisulfite-Seq
SRX383021 HSC (LSK, CD34-, CD48-, CD150+) 0.737 21.6 59908 822.5 776 1024.4 3622 6410.8 0.986 GSM1274426: HSC_R3; Mus musculus; Bisulfite-Seq
SRX383022 MPP1 (LSK, CD34+, CD48-, CD150+) 0.768 17.3 59123 855.7 589 987.4 3573 6710.6 0.992 GSM1274427: MPP1_R1; Mus musculus; Bisulfite-Seq
SRX383023 MPP1 (LSK, CD34+, CD48-, CD150+) 0.754 11.4 48938 955.3 615 1029.3 1530 11074.4 0.988 GSM1274428: MPP1_R2; Mus musculus; Bisulfite-Seq
SRX383024 MPP1 (LSK, CD34+, CD48-, CD150+) 0.737 14.0 51647 907.0 708 1000.1 3442 6310.7 0.989 GSM1274429: MPP1_R3; Mus musculus; Bisulfite-Seq
SRX383025 MPP2 (LSK, CD34+, CD48+, CD150+) 0.780 9.1 45685 1062.7 528 1047.1 1432 12565.1 0.982 GSM1274430: MPP2_R1; Mus musculus; Bisulfite-Seq
SRX383026 MPP2 (LSK, CD34+, CD48+, CD150+) 0.754 17.5 56535 891.0 591 979.6 3651 6652.9 0.988 GSM1274431: MPP2_R2; Mus musculus; Bisulfite-Seq
SRX383027 MPP2 (LSK, CD34+, CD48+, CD150+) 0.744 18.4 59642 853.2 554 991.0 3575 6783.9 0.987 GSM1274432: MPP2_R3; Mus musculus; Bisulfite-Seq
SRX383028 MPP (LSK, CD34+, CD48+, CD150-) 0.769 16.8 58480 864.6 595 985.2 3335 6980.1 0.992 GSM1274433: MPP_R1; Mus musculus; Bisulfite-Seq
SRX383029 MPP (LSK, CD34+, CD48+, CD150-) 0.774 15.6 56695 883.2 973 995.0 3256 7052.6 0.991 GSM1274434: MPP_R2; Mus musculus; Bisulfite-Seq
SRX383030 MPP (LSK, CD34+, CD48+, CD150-) 0.747 15.4 54728 883.1 679 977.1 3362 6630.1 0.990 GSM1274435: MPP_R3; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.