Mouse methylome studies SRP414189 Track Settings
 
TET activity propagates transcriptional memory through embryonic dormancy [WGBS] [Embryonic Stem Cell]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX18798028 
SRX18798029 
SRX18798030 
SRX18798031 
SRX18798032 
SRX18798033 
SRX18798034 
SRX18798035 
SRX18798036 
SRX18798037 
SRX18798038 
SRX18798039 
SRX18798040 
SRX18798041 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX18798028  HMR  Embryonic Stem Cell / SRX18798028 (HMR)   Data format 
hide
 Configure
 SRX18798028  CpG methylation  Embryonic Stem Cell / SRX18798028 (CpG methylation)   Data format 
hide
 SRX18798029  HMR  Embryonic Stem Cell / SRX18798029 (HMR)   Data format 
hide
 Configure
 SRX18798029  CpG methylation  Embryonic Stem Cell / SRX18798029 (CpG methylation)   Data format 
hide
 SRX18798030  HMR  Embryonic Stem Cell / SRX18798030 (HMR)   Data format 
hide
 Configure
 SRX18798030  CpG methylation  Embryonic Stem Cell / SRX18798030 (CpG methylation)   Data format 
hide
 SRX18798031  HMR  Embryonic Stem Cell / SRX18798031 (HMR)   Data format 
hide
 Configure
 SRX18798031  CpG methylation  Embryonic Stem Cell / SRX18798031 (CpG methylation)   Data format 
hide
 SRX18798032  HMR  Embryonic Stem Cell / SRX18798032 (HMR)   Data format 
hide
 Configure
 SRX18798032  CpG methylation  Embryonic Stem Cell / SRX18798032 (CpG methylation)   Data format 
hide
 SRX18798033  HMR  Embryonic Stem Cell / SRX18798033 (HMR)   Data format 
hide
 Configure
 SRX18798033  CpG methylation  Embryonic Stem Cell / SRX18798033 (CpG methylation)   Data format 
hide
 SRX18798034  HMR  Embryonic Stem Cell / SRX18798034 (HMR)   Data format 
hide
 Configure
 SRX18798034  CpG methylation  Embryonic Stem Cell / SRX18798034 (CpG methylation)   Data format 
hide
 SRX18798035  HMR  Embryonic Stem Cell / SRX18798035 (HMR)   Data format 
hide
 Configure
 SRX18798035  CpG methylation  Embryonic Stem Cell / SRX18798035 (CpG methylation)   Data format 
hide
 Configure
 SRX18798036  CpG methylation  Embryonic Stem Cell / SRX18798036 (CpG methylation)   Data format 
hide
 Configure
 SRX18798037  CpG methylation  Embryonic Stem Cell / SRX18798037 (CpG methylation)   Data format 
hide
 Configure
 SRX18798038  CpG methylation  Embryonic Stem Cell / SRX18798038 (CpG methylation)   Data format 
hide
 Configure
 SRX18798039  CpG methylation  Embryonic Stem Cell / SRX18798039 (CpG methylation)   Data format 
hide
 Configure
 SRX18798040  CpG methylation  Embryonic Stem Cell / SRX18798040 (CpG methylation)   Data format 
hide
 Configure
 SRX18798041  CpG methylation  Embryonic Stem Cell / SRX18798041 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: TET activity propagates transcriptional memory through embryonic dormancy [WGBS]
SRA: SRP414189
GEO: GSE221469
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX18798028 Embryonic Stem Cell 0.376 26.1 43494 1920.0 1384 927.7 3057 25537.8 0.983 GSM6873765: WBGS_WT_N_rep1; Mus musculus; Bisulfite-Seq
SRX18798029 Embryonic Stem Cell 0.402 26.6 41075 1897.2 665 870.6 3210 25557.5 0.982 GSM6873766: WBGS_WT_N_rep2; Mus musculus; Bisulfite-Seq
SRX18798030 Embryonic Stem Cell 0.371 23.3 40755 1924.7 891 904.5 2413 31175.4 0.983 GSM6873767: WBGS_WT_24h_rep1; Mus musculus; Bisulfite-Seq
SRX18798031 Embryonic Stem Cell 0.382 28.5 39601 2348.9 187 891.7 4331 52343.7 0.981 GSM6873768: WBGS_WT_24h_rep2; Mus musculus; Bisulfite-Seq
SRX18798032 Embryonic Stem Cell 0.518 23.6 47952 1697.7 303 1016.0 3724 20770.1 0.981 GSM6873769: WBGS_WT_72h_rep1; Mus musculus; Bisulfite-Seq
SRX18798033 Embryonic Stem Cell 0.510 24.7 45310 1818.9 152 876.5 4997 29011.2 0.981 GSM6873770: WBGS_WT_72h_rep2; Mus musculus; Bisulfite-Seq
SRX18798034 Embryonic Stem Cell 0.653 23.0 55180 1532.0 392 998.5 4453 14648.4 0.979 GSM6873771: WBGS_WT_144h_rep1; Mus musculus; Bisulfite-Seq
SRX18798035 Embryonic Stem Cell 0.653 22.7 52848 1539.8 302 981.5 4462 14837.2 0.980 GSM6873772: WBGS_WT_144h_rep2; Mus musculus; Bisulfite-Seq
SRX18798036 Embryonic Stem Cell 0.264 29.4 35469 6891.6 223 857.2 59 1003490.6 0.983 GSM6873773: WBGS_KO_N_rep1; Mus musculus; Bisulfite-Seq
SRX18798037 Embryonic Stem Cell 0.354 27.9 42390 4166.0 135 809.8 4481 86382.1 0.983 GSM6873774: WBGS_KO_N_rep2; Mus musculus; Bisulfite-Seq
SRX18798038 Embryonic Stem Cell 0.265 23.6 33274 7263.0 147 869.8 1 1866709.0 0.983 GSM6873775: WBGS_KO_24h_rep1; Mus musculus; Bisulfite-Seq
SRX18798039 Embryonic Stem Cell 0.338 20.7 40288 5647.6 79 812.7 4488 100260.5 0.983 GSM6873776: WBGS_KO_24h_rep2; Mus musculus; Bisulfite-Seq
SRX18798040 Embryonic Stem Cell 0.414 22.4 43468 4316.3 143 856.0 4831 84336.3 0.982 GSM6873777: WBGS_KO_72h_rep1; Mus musculus; Bisulfite-Seq
SRX18798041 Embryonic Stem Cell 0.479 25.3 45550 3791.2 98 868.7 4595 92368.5 0.983 GSM6873778: WBGS_KO_72h_rep2; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.