Mouse methylome studies SRP307526 Track Settings
 
DNA methylation regulates haematopoietic development [AGM, Bone Marrow, Fetal Liver]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
CpG reads ▾       PMD       CpG methylation ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views CpG reads  PMD  CpG methylation  AMR  HMR 
experiment
SRX10150729 
SRX10150730 
SRX10150731 
SRX10150732 
SRX10150733 
SRX10150734 
SRX10150735 
SRX10150736 
SRX10150737 
SRX10150738 
SRX10150740 
SRX10150741 
SRX10150742 
SRX10150743 
SRX10150744 
SRX10150745 
SRX10150746 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX10150729  HMR  AGM / SRX10150729 (HMR)   Data format 
hide
 Configure
 SRX10150729  CpG methylation  AGM / SRX10150729 (CpG methylation)   Data format 
hide
 SRX10150730  HMR  AGM / SRX10150730 (HMR)   Data format 
hide
 Configure
 SRX10150730  CpG methylation  AGM / SRX10150730 (CpG methylation)   Data format 
hide
 SRX10150731  HMR  AGM / SRX10150731 (HMR)   Data format 
hide
 Configure
 SRX10150731  CpG methylation  AGM / SRX10150731 (CpG methylation)   Data format 
hide
 SRX10150732  HMR  AGM / SRX10150732 (HMR)   Data format 
hide
 Configure
 SRX10150732  CpG methylation  AGM / SRX10150732 (CpG methylation)   Data format 
hide
 SRX10150733  HMR  AGM / SRX10150733 (HMR)   Data format 
hide
 Configure
 SRX10150733  CpG methylation  AGM / SRX10150733 (CpG methylation)   Data format 
hide
 SRX10150734  HMR  AGM / SRX10150734 (HMR)   Data format 
hide
 Configure
 SRX10150734  CpG methylation  AGM / SRX10150734 (CpG methylation)   Data format 
hide
 SRX10150735  HMR  AGM / SRX10150735 (HMR)   Data format 
hide
 Configure
 SRX10150735  CpG methylation  AGM / SRX10150735 (CpG methylation)   Data format 
hide
 SRX10150736  HMR  AGM / SRX10150736 (HMR)   Data format 
hide
 Configure
 SRX10150736  CpG methylation  AGM / SRX10150736 (CpG methylation)   Data format 
hide
 SRX10150737  HMR  AGM / SRX10150737 (HMR)   Data format 
hide
 Configure
 SRX10150737  CpG methylation  AGM / SRX10150737 (CpG methylation)   Data format 
hide
 SRX10150738  HMR  AGM / SRX10150738 (HMR)   Data format 
hide
 Configure
 SRX10150738  CpG methylation  AGM / SRX10150738 (CpG methylation)   Data format 
hide
 SRX10150740  HMR  AGM / SRX10150740 (HMR)   Data format 
hide
 Configure
 SRX10150740  CpG methylation  AGM / SRX10150740 (CpG methylation)   Data format 
hide
 SRX10150741  HMR  Fetal Liver / SRX10150741 (HMR)   Data format 
hide
 Configure
 SRX10150741  CpG methylation  Fetal Liver / SRX10150741 (CpG methylation)   Data format 
hide
 SRX10150742  HMR  Fetal Liver / SRX10150742 (HMR)   Data format 
hide
 Configure
 SRX10150742  CpG methylation  Fetal Liver / SRX10150742 (CpG methylation)   Data format 
hide
 SRX10150743  HMR  Fetal Liver / SRX10150743 (HMR)   Data format 
hide
 Configure
 SRX10150743  CpG methylation  Fetal Liver / SRX10150743 (CpG methylation)   Data format 
hide
 SRX10150744  HMR  Fetal Liver / SRX10150744 (HMR)   Data format 
hide
 Configure
 SRX10150744  CpG methylation  Fetal Liver / SRX10150744 (CpG methylation)   Data format 
hide
 SRX10150745  HMR  Bone Marrow / SRX10150745 (HMR)   Data format 
hide
 Configure
 SRX10150745  CpG methylation  Bone Marrow / SRX10150745 (CpG methylation)   Data format 
hide
 SRX10150746  HMR  Bone Marrow / SRX10150746 (HMR)   Data format 
hide
 Configure
 SRX10150746  CpG methylation  Bone Marrow / SRX10150746 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: DNA methylation regulates haematopoietic development
SRA: SRP307526
GEO: GSE167237
Pubmed: 34545065

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX10150729 AGM 0.676 2.9 31552 1458.1 25 1083.3 232 64897.5 0.987 GSM5100148: arterial endothelial cell rep1; Mus musculus; Bisulfite-Seq
SRX10150730 AGM 0.676 2.7 31016 1489.0 34 1131.9 271 68839.7 0.986 GSM5100149: arterial endothelial cell rep2; Mus musculus; Bisulfite-Seq
SRX10150731 AGM 0.684 2.5 30569 1513.9 25 1234.5 246 79817.9 0.986 GSM5100150: hemogenic endothelial cell rep1; Mus musculus; Bisulfite-Seq
SRX10150732 AGM 0.680 2.4 31106 1498.3 24 1080.3 294 79254.5 0.986 GSM5100151: hemogenic endothelial cell rep2; Mus musculus; Bisulfite-Seq
SRX10150733 AGM 0.679 2.8 31517 1470.0 38 1037.7 338 62289.3 0.986 GSM5100152: hemogenic endothelial cell rep3; Mus musculus; Bisulfite-Seq
SRX10150734 AGM 0.560 4.4 31656 1464.9 129 916.8 331 44474.4 0.977 GSM5100153: T1_preHSC rep1; Mus musculus; Bisulfite-Seq
SRX10150735 AGM 0.588 4.5 34345 1384.8 115 1001.5 324 47074.7 0.977 GSM5100154: T1_preHSC rep2; Mus musculus; Bisulfite-Seq
SRX10150736 AGM 0.578 4.9 32028 1397.6 129 946.3 472 36325.5 0.978 GSM5100155: T1_preHSC rep3; Mus musculus; Bisulfite-Seq
SRX10150737 AGM 0.646 7.3 38554 1202.4 249 1037.5 604 27413.7 0.982 GSM5100156: T1_preHSC rep4; Mus musculus; Bisulfite-Seq
SRX10150738 AGM 0.670 5.3 35774 1270.1 161 1073.0 273 41234.6 0.984 GSM5100157: T2_preHSC rep1; Mus musculus; Bisulfite-Seq
SRX10150740 AGM 0.654 5.8 35691 1249.3 147 1160.4 554 29757.2 0.984 GSM5100159: T2_preHSC rep3; Mus musculus; Bisulfite-Seq
SRX10150741 Fetal Liver 0.630 4.6 35241 1259.8 150 1058.0 388 34275.4 0.975 GSM5100160: E14 HSC rep1; Mus musculus; Bisulfite-Seq
SRX10150742 Fetal Liver 0.636 4.2 34364 1281.4 135 1064.4 395 33680.4 0.975 GSM5100161: E14 HSC rep2; Mus musculus; Bisulfite-Seq
SRX10150743 Fetal Liver 0.628 4.7 34917 1262.0 150 1156.2 374 34543.0 0.974 GSM5100162: E14 HSC rep3; Mus musculus; Bisulfite-Seq
SRX10150744 Fetal Liver 0.622 4.5 34124 1277.2 142 1033.4 286 34837.5 0.975 GSM5100163: E14 HSC rep4; Mus musculus; Bisulfite-Seq
SRX10150745 Bone Marrow 0.627 4.6 35458 1210.8 241 991.0 226 35197.7 0.976 GSM5100164: Adult BM HSC rep1; Mus musculus; Bisulfite-Seq
SRX10150746 Bone Marrow 0.670 4.8 36676 1179.9 225 978.6 450 27169.3 0.977 GSM5100165: Adult BM HSC rep2; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.