Mouse methylome studies SRP151725 Track Settings
 
Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance [mESC, mESC-derived Cell]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX4329506 
SRX4329513 
SRX4329519 
SRX4329520 
SRX4329522 
SRX4329523 
SRX4329524 
SRX5516756 
SRX5516757 
SRX5516758 
SRX5516759 
SRX5516760 
SRX5516761 
SRX5516762 
SRX5516763 
SRX5516764 
SRX5516765 
SRX5516766 
SRX5516767 
SRX5516768 
SRX5516769 
SRX8171333 
SRX8171334 
SRX8171335 
SRX8171336 
SRX8171337 
SRX8171338 
SRX8171339 
SRX8171340 
SRX8171341 
experiment
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 Configure
 SRX4329506  CpG methylation  mESC-derived Cell / SRX4329506 (CpG methylation)   Data format 
hide
 Configure
 SRX4329513  CpG methylation  mESC / SRX4329513 (CpG methylation)   Data format 
hide
 Configure
 SRX4329519  CpG methylation  mESC-derived Cell / SRX4329519 (CpG methylation)   Data format 
hide
 SRX4329520  HMR  mESC / SRX4329520 (HMR)   Data format 
hide
 Configure
 SRX4329520  CpG methylation  mESC / SRX4329520 (CpG methylation)   Data format 
hide
 SRX4329522  HMR  mESC-derived Cell / SRX4329522 (HMR)   Data format 
hide
 Configure
 SRX4329522  CpG methylation  mESC-derived Cell / SRX4329522 (CpG methylation)   Data format 
hide
 SRX4329523  HMR  mESC-derived Cell / SRX4329523 (HMR)   Data format 
hide
 Configure
 SRX4329523  CpG methylation  mESC-derived Cell / SRX4329523 (CpG methylation)   Data format 
hide
 SRX4329524  HMR  mESC / SRX4329524 (HMR)   Data format 
hide
 Configure
 SRX4329524  CpG methylation  mESC / SRX4329524 (CpG methylation)   Data format 
hide
 Configure
 SRX5516756  CpG methylation  mESC / SRX5516756 (CpG methylation)   Data format 
hide
 Configure
 SRX5516757  CpG methylation  mESC / SRX5516757 (CpG methylation)   Data format 
hide
 Configure
 SRX5516758  CpG methylation  mESC / SRX5516758 (CpG methylation)   Data format 
hide
 Configure
 SRX5516759  CpG methylation  mESC / SRX5516759 (CpG methylation)   Data format 
hide
 Configure
 SRX5516760  CpG methylation  mESC / SRX5516760 (CpG methylation)   Data format 
hide
 Configure
 SRX5516761  CpG methylation  mESC / SRX5516761 (CpG methylation)   Data format 
hide
 Configure
 SRX5516762  CpG methylation  mESC / SRX5516762 (CpG methylation)   Data format 
hide
 Configure
 SRX5516763  CpG methylation  mESC / SRX5516763 (CpG methylation)   Data format 
hide
 Configure
 SRX5516764  CpG methylation  mESC / SRX5516764 (CpG methylation)   Data format 
hide
 Configure
 SRX5516765  CpG methylation  mESC / SRX5516765 (CpG methylation)   Data format 
hide
 SRX5516766  HMR  mESC / SRX5516766 (HMR)   Data format 
hide
 Configure
 SRX5516766  CpG methylation  mESC / SRX5516766 (CpG methylation)   Data format 
hide
 SRX5516767  HMR  mESC / SRX5516767 (HMR)   Data format 
hide
 Configure
 SRX5516767  CpG methylation  mESC / SRX5516767 (CpG methylation)   Data format 
hide
 SRX5516768  HMR  mESC / SRX5516768 (HMR)   Data format 
hide
 Configure
 SRX5516768  CpG methylation  mESC / SRX5516768 (CpG methylation)   Data format 
hide
 SRX5516769  HMR  mESC / SRX5516769 (HMR)   Data format 
hide
 Configure
 SRX5516769  CpG methylation  mESC / SRX5516769 (CpG methylation)   Data format 
hide
 SRX8171333  HMR  mESC / SRX8171333 (HMR)   Data format 
hide
 Configure
 SRX8171333  CpG methylation  mESC / SRX8171333 (CpG methylation)   Data format 
hide
 SRX8171334  HMR  mESC / SRX8171334 (HMR)   Data format 
hide
 Configure
 SRX8171334  CpG methylation  mESC / SRX8171334 (CpG methylation)   Data format 
hide
 Configure
 SRX8171335  CpG methylation  mESC / SRX8171335 (CpG methylation)   Data format 
hide
 SRX8171336  HMR  mESC / SRX8171336 (HMR)   Data format 
hide
 Configure
 SRX8171336  CpG methylation  mESC / SRX8171336 (CpG methylation)   Data format 
hide
 SRX8171337  HMR  mESC / SRX8171337 (HMR)   Data format 
hide
 Configure
 SRX8171337  CpG methylation  mESC / SRX8171337 (CpG methylation)   Data format 
hide
 SRX8171338  HMR  mESC / SRX8171338 (HMR)   Data format 
hide
 Configure
 SRX8171338  CpG methylation  mESC / SRX8171338 (CpG methylation)   Data format 
hide
 SRX8171339  HMR  mESC / SRX8171339 (HMR)   Data format 
hide
 Configure
 SRX8171339  CpG methylation  mESC / SRX8171339 (CpG methylation)   Data format 
hide
 SRX8171340  HMR  mESC / SRX8171340 (HMR)   Data format 
hide
 Configure
 SRX8171340  CpG methylation  mESC / SRX8171340 (CpG methylation)   Data format 
hide
 SRX8171341  HMR  mESC / SRX8171341 (HMR)   Data format 
hide
 Configure
 SRX8171341  CpG methylation  mESC / SRX8171341 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance
SRA: SRP151725
GEO: GSE116482
Pubmed: 32690947

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX4329506 mESC-derived Cell 0.576 2.6 18357 2751.2 62 1329.2 84 118509.5 0.992 GSM3239873: QKO_13D_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX4329513 mESC 0.019 2.8 4 643208.5 0 0.0 59 3645699.8 0.993 GSM3239880: RQKO_mES_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX4329519 mESC-derived Cell 0.532 4.8 19735 1462.0 1478 1150.3 51 48158.9 0.973 GSM3239886: TKO_13D_BS_seq_rep2; Mus musculus; Bisulfite-Seq
SRX4329520 mESC 0.756 2.4 24932 1534.0 51 1175.1 170 156008.6 0.991 GSM3239887: TKO_mES_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX4329522 mESC-derived Cell 0.686 3.0 21729 1528.7 66 1331.9 155 73051.7 0.992 GSM3239889: WT_13D_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX4329523 mESC-derived Cell 0.727 4.5 21886 1259.3 411 1145.0 261 39126.2 0.956 GSM3239890: WT_13D_BS_seq_rep2; Mus musculus; Bisulfite-Seq
SRX4329524 mESC 0.672 2.0 28754 2487.5 0 0.0 361 220295.9 0.991 GSM3239891: WT_mES_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX5516756 mESC 0.502 9.6 26241 4351.9 60 1239.3 2170 121413.7 0.994 GSM3669516: QKO_Con_Hairpin_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX5516757 mESC 0.509 5.5 19102 5340.6 18 969.3 1380 197872.8 0.993 GSM3669517: QKO_Con_Hairpin_BS_seq_rep2; Mus musculus; Bisulfite-Seq
SRX5516758 mESC 0.558 11.1 26618 3650.8 127 1290.7 2731 43578.2 0.994 GSM3669518: QKO_Dnmt3c_KO_Con_Hairpin_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX5516759 mESC 0.575 17.4 30384 3182.3 187 1153.4 2728 45934.3 0.992 GSM3669519: QKO_Dnmt3c_KO_Con_Hairpin_BS_seq_rep2; Mus musculus; Bisulfite-Seq
SRX5516760 mESC 0.559 9.2 26189 3696.1 88 1400.3 2568 45303.2 0.994 GSM3669520: QKO_Dnmt3c_KO_Nocodazole_Hairpin_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX5516761 mESC 0.572 13.9 29188 3352.3 133 1193.9 2932 48782.9 0.993 GSM3669521: QKO_Dnmt3c_KO_Nocodazole_Hairpin_BS_seq_rep2; Mus musculus; Bisulfite-Seq
SRX5516762 mESC 0.524 7.2 24671 4872.9 44 1169.8 2021 136923.7 0.993 GSM3669522: QKO_Nocodazole_Hairpin_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX5516763 mESC 0.532 10.0 29198 3611.6 80 1153.9 2899 81989.1 0.991 GSM3669523: QKO_Nocodazole_Hairpin_BS_seq_rep2; Mus musculus; Bisulfite-Seq
SRX5516764 mESC 0.027 8.9 369 291538.7 0 0.0 149 1753533.2 0.995 GSM3669524: RQKO_Con_Hairpin_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX5516765 mESC 0.025 10.8 1810 158278.8 2 1708.5 641 806967.6 0.995 GSM3669525: RQKO_Nocodazole_Hairpin_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX5516766 mESC 0.587 9.2 39629 1729.8 61 1185.8 1578 42994.8 0.993 GSM3669526: WT_Con_Hairpin_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX5516767 mESC 0.593 8.1 37994 1792.3 46 1215.6 1782 38642.8 0.993 GSM3669527: WT_Con_Hairpin_BS_seq_rep2; Mus musculus; Bisulfite-Seq
SRX5516768 mESC 0.600 6.5 35192 2123.3 38 1227.2 2151 52254.0 0.992 GSM3669528: WT_Nocodazole_Hairpin_BS_seq_rep1; Mus musculus; Bisulfite-Seq
SRX5516769 mESC 0.605 7.5 36436 1917.5 36 1723.0 2149 48825.4 0.986 GSM3669529: WT_Nocodazole_Hairpin_BS_seq_rep2; Mus musculus; Bisulfite-Seq
SRX8171333 mESC 0.437 54.6 45437 2958.8 252 1340.5 3822 52107.2 0.993 GSM4495515: SKO_D15_C1_HBS_seq; Mus musculus; Bisulfite-Seq
SRX8171334 mESC 0.446 55.3 48339 2939.7 242 1341.7 3925 52433.2 0.993 GSM4495516: SKO_D30_C1_HBS_seq; Mus musculus; Bisulfite-Seq
SRX8171335 mESC 0.456 51.2 50819 3031.6 194 1484.0 3659 60752.9 0.993 GSM4495517: SKO_D60_C1_HBS_seq; Mus musculus; Bisulfite-Seq
SRX8171336 mESC 0.436 126.0 48270 2830.8 317 1297.0 0 0.0 0.993 GSM4495518: SKO_D15_C2_HBS_seq; Mus musculus; Bisulfite-Seq
SRX8171337 mESC 0.448 114.0 50086 2801.3 276 1339.0 0 0.0 0.992 GSM4495519: SKO_D30_C2_HBS_seq; Mus musculus; Bisulfite-Seq
SRX8171338 mESC 0.481 109.8 54147 2655.4 266 1352.9 0 0.0 0.992 GSM4495520: SKO_D60_C2_HBS_seq; Mus musculus; Bisulfite-Seq
SRX8171339 mESC 0.503 106.4 50016 2214.9 356 1269.6 0 0.0 0.993 GSM4495521: SKO_D15_C3_HBS_seq; Mus musculus; Bisulfite-Seq
SRX8171340 mESC 0.493 108.2 50939 2377.2 311 1297.8 0 0.0 0.992 GSM4495522: SKO_D30_C3_HBS_seq; Mus musculus; Bisulfite-Seq
SRX8171341 mESC 0.468 105.7 52659 2925.2 237 1451.7 0 0.0 0.991 GSM4495523: SKO_D60_C3_HBS_seq; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.