Mouse methylome studies SRP118911 Track Settings
 
High-Resolution Dissection of Conducive Somatic Cell Reprogramming to Naïve Ground State Pluripotency in Mbd3/NuRD and Gatad2a/NuRD Depleted Systems [WGBS] [Gatad2a-/- Cell Line, Mbd3f/- Cell Line, WT Cell Line]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX3217261 
SRX3217262 
SRX3217263 
SRX3217264 
SRX3217265 
SRX3217266 
SRX3217267 
SRX3217268 
SRX3217269 
SRX3217270 
SRX3217271 
SRX3217272 
SRX3217273 
SRX3217274 
SRX3217275 
SRX3217276 
SRX3217277 
SRX3217278 
SRX3217280 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX3217261  HMR  Mbd3f/- Cell Line / SRX3217261 (HMR)   Data format 
hide
 Configure
 SRX3217261  CpG methylation  Mbd3f/- Cell Line / SRX3217261 (CpG methylation)   Data format 
hide
 SRX3217262  HMR  Mbd3f/- Cell Line / SRX3217262 (HMR)   Data format 
hide
 Configure
 SRX3217262  CpG methylation  Mbd3f/- Cell Line / SRX3217262 (CpG methylation)   Data format 
hide
 SRX3217263  HMR  Mbd3f/- Cell Line / SRX3217263 (HMR)   Data format 
hide
 Configure
 SRX3217263  CpG methylation  Mbd3f/- Cell Line / SRX3217263 (CpG methylation)   Data format 
hide
 SRX3217264  HMR  Mbd3f/- Cell Line / SRX3217264 (HMR)   Data format 
hide
 Configure
 SRX3217264  CpG methylation  Mbd3f/- Cell Line / SRX3217264 (CpG methylation)   Data format 
hide
 SRX3217265  HMR  Mbd3f/- Cell Line / SRX3217265 (HMR)   Data format 
hide
 Configure
 SRX3217265  CpG methylation  Mbd3f/- Cell Line / SRX3217265 (CpG methylation)   Data format 
hide
 SRX3217266  HMR  Mbd3f/- Cell Line / SRX3217266 (HMR)   Data format 
hide
 Configure
 SRX3217266  CpG methylation  Mbd3f/- Cell Line / SRX3217266 (CpG methylation)   Data format 
hide
 Configure
 SRX3217267  CpG methylation  Mbd3f/- Cell Line / SRX3217267 (CpG methylation)   Data format 
hide
 Configure
 SRX3217268  CpG methylation  Mbd3f/- Cell Line / SRX3217268 (CpG methylation)   Data format 
hide
 Configure
 SRX3217269  CpG methylation  Mbd3f/- Cell Line / SRX3217269 (CpG methylation)   Data format 
hide
 Configure
 SRX3217270  CpG methylation  Mbd3f/- Cell Line / SRX3217270 (CpG methylation)   Data format 
hide
 Configure
 SRX3217271  CpG methylation  Gatad2a-/- Cell Line / SRX3217271 (CpG methylation)   Data format 
hide
 Configure
 SRX3217272  CpG methylation  Gatad2a-/- Cell Line / SRX3217272 (CpG methylation)   Data format 
hide
 Configure
 SRX3217273  CpG methylation  Gatad2a-/- Cell Line / SRX3217273 (CpG methylation)   Data format 
hide
 Configure
 SRX3217274  CpG methylation  Gatad2a-/- Cell Line / SRX3217274 (CpG methylation)   Data format 
hide
 Configure
 SRX3217275  CpG methylation  Gatad2a-/- Cell Line / SRX3217275 (CpG methylation)   Data format 
hide
 Configure
 SRX3217276  CpG methylation  Gatad2a-/- Cell Line / SRX3217276 (CpG methylation)   Data format 
hide
 SRX3217277  HMR  WT Cell Line / SRX3217277 (HMR)   Data format 
hide
 Configure
 SRX3217277  CpG methylation  WT Cell Line / SRX3217277 (CpG methylation)   Data format 
hide
 SRX3217278  HMR  WT Cell Line / SRX3217278 (HMR)   Data format 
hide
 Configure
 SRX3217278  CpG methylation  WT Cell Line / SRX3217278 (CpG methylation)   Data format 
hide
 Configure
 SRX3217280  CpG methylation  WT Cell Line / SRX3217280 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: High-Resolution Dissection of Conducive Somatic Cell Reprogramming to Naïve Ground State Pluripotency in Mbd3/NuRD and Gatad2a/NuRD Depleted Systems [WGBS]
SRA: SRP118911
GEO: GSE104283
Pubmed: 30122475

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX3217261 Mbd3f/- Cell Line 0.685 2.7 22911 1730.6 57 1271.9 95 123874.5 0.959 GSM2794005: WGBS from Mbd3f/- system, MEF; Mus musculus; Bisulfite-Seq
SRX3217262 Mbd3f/- Cell Line 0.671 3.5 23667 1708.6 63 1188.5 168 80335.2 0.974 GSM2794006: WGBS from Mbd3f/- system, Day1; Mus musculus; Bisulfite-Seq
SRX3217263 Mbd3f/- Cell Line 0.667 2.4 21703 1914.8 40 1191.3 96 140120.2 0.973 GSM2794007: WGBS from Mbd3f/- system, Day2; Mus musculus; Bisulfite-Seq
SRX3217264 Mbd3f/- Cell Line 0.668 3.5 23030 1814.8 67 1160.6 273 112498.3 0.979 GSM2794008: WGBS from Mbd3f/- system, Day3; Mus musculus; Bisulfite-Seq
SRX3217265 Mbd3f/- Cell Line 0.640 5.6 26515 1725.1 92 1101.6 415 74511.0 0.983 GSM2794009: WGBS from Mbd3f/- system, Day4; Mus musculus; Bisulfite-Seq
SRX3217266 Mbd3f/- Cell Line 0.599 5.3 26809 1890.9 94 1129.8 321 52504.4 0.981 GSM2794010: WGBS from Mbd3f/- system, Day5; Mus musculus; Bisulfite-Seq
SRX3217267 Mbd3f/- Cell Line 0.500 5.4 23567 3377.3 77 1866.1 458 64868.2 0.983 GSM2794011: WGBS from Mbd3f/- system, Day6; Mus musculus; Bisulfite-Seq
SRX3217268 Mbd3f/- Cell Line 0.419 5.8 15997 6949.4 96 1221.5 648 159895.4 0.982 GSM2794012: WGBS from Mbd3f/- system, Day7; Mus musculus; Bisulfite-Seq
SRX3217269 Mbd3f/- Cell Line 0.343 5.0 0 0.0 94 1065.7 4 9932900.2 0.982 GSM2794013: WGBS from Mbd3f/- system, Day8; Mus musculus; Bisulfite-Seq
SRX3217270 Mbd3f/- Cell Line 0.437 6.8 32822 3445.8 39 1231.9 1019 95620.0 0.981 GSM2794014: WGBS from Mbd3f/- system, IPS; Mus musculus; Bisulfite-Seq
SRX3217271 Gatad2a-/- Cell Line 0.645 2.6 24551 5108.3 43 1256.7 661 1364073.1 0.986 GSM2794015: WGBS from Gatad2a-/- system, MEF; Mus musculus; Bisulfite-Seq
SRX3217272 Gatad2a-/- Cell Line 0.634 2.4 21716 4303.8 24 1486.9 575 1497553.6 0.983 GSM2794016: WGBS from Gatad2a-/- system, Day2; Mus musculus; Bisulfite-Seq
SRX3217273 Gatad2a-/- Cell Line 0.632 2.9 22076 4477.5 33 1180.6 605 1423921.6 0.987 GSM2794017: WGBS from Gatad2a-/- system, Day4; Mus musculus; Bisulfite-Seq
SRX3217274 Gatad2a-/- Cell Line 0.471 2.5 16698 6265.5 23 1002.9 461 292821.1 0.982 GSM2794018: WGBS from Gatad2a-/- system, Day6; Mus musculus; Bisulfite-Seq
SRX3217275 Gatad2a-/- Cell Line 0.377 2.5 0 0.0 12 808.5 332 1105963.8 0.981 GSM2794019: WGBS from Gatad2a-/- system, Day8; Mus musculus; Bisulfite-Seq
SRX3217276 Gatad2a-/- Cell Line 0.508 2.1 24624 5308.4 4 1804.8 566 653066.6 0.984 GSM2794020: WGBS from Gatad2a-/- system, IPS; Mus musculus; Bisulfite-Seq
SRX3217277 WT Cell Line 0.690 3.0 23051 1692.8 28 1153.6 99 49920.5 0.987 GSM2794021: WGBS from WT system, MEF; Mus musculus; Bisulfite-Seq
SRX3217278 WT Cell Line 0.668 2.6 22857 1921.5 24 1251.8 21 92893.9 0.987 GSM2794022: WGBS from WT system, Day4; Mus musculus; Bisulfite-Seq
SRX3217280 WT Cell Line 0.548 2.6 36226 3699.0 13 1125.0 809 516733.3 0.985 GSM2794023: WGBS from WT system, IPS; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.