Mouse methylome studies SRP095235 Track Settings
 
Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism [Liver]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
CpG reads ▾       PMD       CpG methylation ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views CpG reads  PMD  CpG methylation  AMR  HMR 
experiment
SRX2431051 
SRX2431052 
SRX2431053 
SRX2431054 
SRX2431055 
SRX2431056 
SRX2431057 
SRX2431058 
SRX2431059 
SRX2431060 
SRX2431061 
SRX2431062 
SRX2431063 
SRX2431064 
SRX2431065 
SRX2431066 
SRX2431067 
SRX2431068 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX2431051  HMR  Liver / SRX2431051 (HMR)   Data format 
hide
 Configure
 SRX2431051  CpG methylation  Liver / SRX2431051 (CpG methylation)   Data format 
hide
 SRX2431052  HMR  Liver / SRX2431052 (HMR)   Data format 
hide
 Configure
 SRX2431052  CpG methylation  Liver / SRX2431052 (CpG methylation)   Data format 
hide
 SRX2431053  HMR  Liver / SRX2431053 (HMR)   Data format 
hide
 Configure
 SRX2431053  CpG methylation  Liver / SRX2431053 (CpG methylation)   Data format 
hide
 SRX2431054  HMR  Liver / SRX2431054 (HMR)   Data format 
hide
 Configure
 SRX2431054  CpG methylation  Liver / SRX2431054 (CpG methylation)   Data format 
hide
 SRX2431055  HMR  Liver / SRX2431055 (HMR)   Data format 
hide
 Configure
 SRX2431055  CpG methylation  Liver / SRX2431055 (CpG methylation)   Data format 
hide
 SRX2431056  HMR  Liver / SRX2431056 (HMR)   Data format 
hide
 Configure
 SRX2431056  CpG methylation  Liver / SRX2431056 (CpG methylation)   Data format 
hide
 SRX2431057  HMR  Liver / SRX2431057 (HMR)   Data format 
hide
 Configure
 SRX2431057  CpG methylation  Liver / SRX2431057 (CpG methylation)   Data format 
hide
 SRX2431058  HMR  Liver / SRX2431058 (HMR)   Data format 
hide
 Configure
 SRX2431058  CpG methylation  Liver / SRX2431058 (CpG methylation)   Data format 
hide
 SRX2431059  HMR  Liver / SRX2431059 (HMR)   Data format 
hide
 Configure
 SRX2431059  CpG methylation  Liver / SRX2431059 (CpG methylation)   Data format 
hide
 SRX2431060  HMR  Liver / SRX2431060 (HMR)   Data format 
hide
 Configure
 SRX2431060  CpG methylation  Liver / SRX2431060 (CpG methylation)   Data format 
hide
 SRX2431061  HMR  Liver / SRX2431061 (HMR)   Data format 
hide
 Configure
 SRX2431061  CpG methylation  Liver / SRX2431061 (CpG methylation)   Data format 
hide
 SRX2431062  HMR  Liver / SRX2431062 (HMR)   Data format 
hide
 Configure
 SRX2431062  CpG methylation  Liver / SRX2431062 (CpG methylation)   Data format 
hide
 SRX2431063  HMR  Liver / SRX2431063 (HMR)   Data format 
hide
 Configure
 SRX2431063  CpG methylation  Liver / SRX2431063 (CpG methylation)   Data format 
hide
 SRX2431064  HMR  Liver / SRX2431064 (HMR)   Data format 
hide
 Configure
 SRX2431064  CpG methylation  Liver / SRX2431064 (CpG methylation)   Data format 
hide
 SRX2431065  HMR  Liver / SRX2431065 (HMR)   Data format 
hide
 Configure
 SRX2431065  CpG methylation  Liver / SRX2431065 (CpG methylation)   Data format 
hide
 SRX2431066  HMR  Liver / SRX2431066 (HMR)   Data format 
hide
 Configure
 SRX2431066  CpG methylation  Liver / SRX2431066 (CpG methylation)   Data format 
hide
 SRX2431067  HMR  Liver / SRX2431067 (HMR)   Data format 
hide
 Configure
 SRX2431067  CpG methylation  Liver / SRX2431067 (CpG methylation)   Data format 
hide
 SRX2431068  HMR  Liver / SRX2431068 (HMR)   Data format 
hide
 Configure
 SRX2431068  CpG methylation  Liver / SRX2431068 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism
SRA: SRP095235
GEO: GSE92486
Pubmed: 28351387

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX2431051 Liver 0.737 3.9 31652 1594.9 27 1053.8 496 24391.5 0.995 GSM2430564: AL 5m Rep1 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431052 Liver 0.743 2.3 25079 1911.3 6 1485.0 204 43044.6 0.996 GSM2430565: AL 5m Rep2 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431053 Liver 0.732 2.5 25728 1941.1 14 1267.4 446 30146.5 0.996 GSM2430566: AL 5m Rep3 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431054 Liver 0.758 3.8 29505 1668.8 43 1072.7 656 22500.7 0.995 GSM2430567: DR 5m Rep1 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431055 Liver 0.743 3.8 29361 1652.4 18 1165.7 663 21277.9 0.995 GSM2430568: DR 5m Rep2 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431056 Liver 0.738 3.6 28221 1649.6 35 1212.5 501 22382.3 0.996 GSM2430569: DR 5m Rep3 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431057 Liver 0.732 7.7 34017 1429.2 165 994.0 1059 13210.8 0.997 GSM2430570: AL 26m PE Rep1 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431058 Liver 0.747 5.8 34326 1467.1 109 1000.3 888 18874.5 0.997 GSM2430571: AL 26m PE Rep2 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431059 Liver 0.745 6.1 31684 1576.7 157 1037.6 1049 13183.1 0.996 GSM2430572: AL 26m PE Rep3 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431060 Liver 0.759 4.9 31639 1603.4 137 995.2 864 18797.4 0.996 GSM2430573: DR 26m PE Rep1 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431061 Liver 0.750 4.1 29712 1673.3 104 1026.1 668 21630.2 0.996 GSM2430574: DR 26m PE Rep2 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431062 Liver 0.748 6.6 34005 1508.3 134 1052.8 1176 13264.4 0.996 GSM2430575: DR 26m PE Rep3 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431063 Liver 0.756 4.6 34426 1491.9 104 1024.9 699 18377.3 0.995 GSM2430576: AL 26m SE Rep1 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431064 Liver 0.770 3.5 29840 1676.8 85 1133.7 719 21909.4 0.996 GSM2430577: AL 26m SE Rep2 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431065 Liver 0.757 3.0 27755 1815.5 116 1096.5 491 27363.7 0.996 GSM2430578: AL 26m SE Rep3 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431066 Liver 0.772 4.1 31274 1581.0 115 1007.8 640 23794.9 0.996 GSM2430579: DR 26m SE Rep1 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431067 Liver 0.766 4.0 29697 1645.7 94 1086.5 624 22796.7 0.996 GSM2430580: DR 26m SE Rep2 BS-seq; Mus musculus; Bisulfite-Seq
SRX2431068 Liver 0.755 4.4 31406 1522.6 90 1047.0 570 22744.6 0.996 GSM2430581: DR 26m SE Rep3 BS-seq; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.