Mouse methylome studies SRP017503 Track Settings
 
Tissue-specific methylomes reveal epigenetic memory in adult mouse tissue [Bone Marrow, Cerebellum, Colon, Cortex, Heart, Intestine, Kidney, Liver, Lung, Olfactory Bulb, Pancreas, Placenta, Skin, Spleen, Stomach, Thymus, Uterus]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
SRX209448 
SRX209449 
SRX209450 
SRX209451 
SRX209452 
SRX209453 
SRX209454 
SRX209455 
SRX209456 
SRX209457 
SRX209458 
SRX209459 
SRX209460 
SRX209461 
SRX209462 
SRX209463 
SRX209464 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 SRX209448  HMR  Bone Marrow / SRX209448 (HMR)   Data format 
hide
 Configure
 SRX209448  CpG methylation  Bone Marrow / SRX209448 (CpG methylation)   Data format 
hide
 SRX209449  HMR  Cerebellum / SRX209449 (HMR)   Data format 
hide
 Configure
 SRX209449  CpG methylation  Cerebellum / SRX209449 (CpG methylation)   Data format 
hide
 SRX209450  HMR  Colon / SRX209450 (HMR)   Data format 
hide
 Configure
 SRX209450  CpG methylation  Colon / SRX209450 (CpG methylation)   Data format 
hide
 SRX209451  HMR  Cortex / SRX209451 (HMR)   Data format 
hide
 Configure
 SRX209451  CpG methylation  Cortex / SRX209451 (CpG methylation)   Data format 
hide
 SRX209452  HMR  Heart / SRX209452 (HMR)   Data format 
hide
 Configure
 SRX209452  CpG methylation  Heart / SRX209452 (CpG methylation)   Data format 
hide
 SRX209453  HMR  Intestine / SRX209453 (HMR)   Data format 
hide
 Configure
 SRX209453  CpG methylation  Intestine / SRX209453 (CpG methylation)   Data format 
hide
 SRX209454  HMR  Kidney / SRX209454 (HMR)   Data format 
hide
 Configure
 SRX209454  CpG methylation  Kidney / SRX209454 (CpG methylation)   Data format 
hide
 SRX209455  HMR  Liver / SRX209455 (HMR)   Data format 
hide
 Configure
 SRX209455  CpG methylation  Liver / SRX209455 (CpG methylation)   Data format 
hide
 SRX209456  HMR  Lung / SRX209456 (HMR)   Data format 
hide
 Configure
 SRX209456  CpG methylation  Lung / SRX209456 (CpG methylation)   Data format 
hide
 SRX209457  HMR  Olfactory Bulb / SRX209457 (HMR)   Data format 
hide
 Configure
 SRX209457  CpG methylation  Olfactory Bulb / SRX209457 (CpG methylation)   Data format 
hide
 SRX209458  HMR  Pancreas / SRX209458 (HMR)   Data format 
hide
 Configure
 SRX209458  CpG methylation  Pancreas / SRX209458 (CpG methylation)   Data format 
hide
 SRX209459  HMR  Placenta / SRX209459 (HMR)   Data format 
hide
 Configure
 SRX209459  CpG methylation  Placenta / SRX209459 (CpG methylation)   Data format 
hide
 SRX209460  HMR  Skin / SRX209460 (HMR)   Data format 
hide
 Configure
 SRX209460  CpG methylation  Skin / SRX209460 (CpG methylation)   Data format 
hide
 SRX209461  HMR  Spleen / SRX209461 (HMR)   Data format 
hide
 Configure
 SRX209461  CpG methylation  Spleen / SRX209461 (CpG methylation)   Data format 
hide
 SRX209462  HMR  Stomach / SRX209462 (HMR)   Data format 
hide
 Configure
 SRX209462  CpG methylation  Stomach / SRX209462 (CpG methylation)   Data format 
hide
 SRX209463  HMR  Thymus / SRX209463 (HMR)   Data format 
hide
 Configure
 SRX209463  CpG methylation  Thymus / SRX209463 (CpG methylation)   Data format 
hide
 SRX209464  HMR  Uterus / SRX209464 (HMR)   Data format 
hide
 Configure
 SRX209464  CpG methylation  Uterus / SRX209464 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Tissue-specific methylomes reveal epigenetic memory in adult mouse tissue
SRA: SRP017503
GEO: GSE42836
Pubmed: 23995138

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
SRX209448 Bone Marrow 0.674 9.3 39075 1086.3 381 973.6 1156 10046.6 0.995 GSM1051150: mouse bone marrow; Mus musculus; Bisulfite-Seq
SRX209449 Cerebellum 0.744 11.9 62183 1053.7 798 1031.0 1755 16580.4 0.987 GSM1051151: mouse cerebellum; Mus musculus; Bisulfite-Seq
SRX209450 Colon 0.742 12.0 36649 1180.1 740 919.9 1634 12465.1 0.994 GSM1051152: mouse colon; Mus musculus; Bisulfite-Seq
SRX209451 Cortex 0.748 13.1 40782 1178.5 690 951.7 3112 8845.4 0.984 GSM1051153: mouse cortex; Mus musculus; Bisulfite-Seq
SRX209452 Heart 0.709 9.8 36592 1136.5 537 991.1 891 13580.6 0.994 GSM1051154: mouse heart; Mus musculus; Bisulfite-Seq
SRX209453 Intestine 0.731 11.9 46473 1180.3 474 957.4 1289 12838.0 0.993 GSM1051155: mouse intestine; Mus musculus; Bisulfite-Seq
SRX209454 Kidney 0.742 8.5 38840 1162.9 426 978.0 1252 12343.3 0.992 GSM1051156: mouse kidney; Mus musculus; Bisulfite-Seq
SRX209455 Liver 0.734 7.6 29416 1329.5 206 1010.3 973 12592.8 0.994 GSM1051157: mouse liver; Mus musculus; Bisulfite-Seq
SRX209456 Lung 0.724 10.2 37300 1163.4 449 957.7 991 13329.8 0.994 GSM1051158: mouse lung; Mus musculus; Bisulfite-Seq
SRX209457 Olfactory Bulb 0.771 13.7 53160 1147.3 707 977.3 3316 9103.9 0.987 GSM1051159: mouse olfactory bulb; Mus musculus; Bisulfite-Seq
SRX209458 Pancreas 0.672 10.6 44185 1254.7 429 975.5 1026 14003.9 0.993 GSM1051160: mouse pancreas; Mus musculus; Bisulfite-Seq
SRX209459 Placenta 0.481 12.8 24234 1577.3 268 932.2 1163 804797.8 0.994 GSM1051161: mouse placenta; Mus musculus; Bisulfite-Seq
SRX209460 Skin 0.714 12.3 42218 1164.8 694 944.1 1507 13402.1 0.993 GSM1051162: mouse skin; Mus musculus; Bisulfite-Seq
SRX209461 Spleen 0.772 8.0 40524 1099.4 353 976.5 1136 12136.2 0.995 GSM1051163: mouse spleen; Mus musculus; Bisulfite-Seq
SRX209462 Stomach 0.708 10.5 38085 1171.0 473 959.8 1032 12693.2 0.992 GSM1051164: mouse stomach; Mus musculus; Bisulfite-Seq
SRX209463 Thymus 0.811 12.1 52184 988.0 455 981.8 1870 11371.5 0.994 GSM1051165: mouse thymus; Mus musculus; Bisulfite-Seq
SRX209464 Uterus 0.720 9.3 41480 1161.2 498 963.8 1170 11527.0 0.994 GSM1051166: mouse uterus; Mus musculus; Bisulfite-Seq

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.