Mouse methylome studies ERP130901 Track Settings
 
Epigenomic rewiring of mouse hippocampus after resistance and endurance exercise training [Hippocampus]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
ERX6020554 
ERX6020555 
ERX6020556 
ERX6020557 
ERX6020558 
ERX6020559 
ERX6020560 
ERX6020561 
ERX6020562 
ERX6020563 
ERX6020564 
ERX6020565 
ERX6020566 
ERX6020567 
ERX6020568 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 ERX6020554  HMR  Hippocampus / ERX6020554 (HMR)   Data format 
hide
 Configure
 ERX6020554  CpG methylation  Hippocampus / ERX6020554 (CpG methylation)   Data format 
hide
 ERX6020555  HMR  Hippocampus / ERX6020555 (HMR)   Data format 
hide
 Configure
 ERX6020555  CpG methylation  Hippocampus / ERX6020555 (CpG methylation)   Data format 
hide
 ERX6020556  HMR  Hippocampus / ERX6020556 (HMR)   Data format 
hide
 Configure
 ERX6020556  CpG methylation  Hippocampus / ERX6020556 (CpG methylation)   Data format 
hide
 ERX6020557  HMR  Hippocampus / ERX6020557 (HMR)   Data format 
hide
 Configure
 ERX6020557  CpG methylation  Hippocampus / ERX6020557 (CpG methylation)   Data format 
hide
 ERX6020558  HMR  Hippocampus / ERX6020558 (HMR)   Data format 
hide
 Configure
 ERX6020558  CpG methylation  Hippocampus / ERX6020558 (CpG methylation)   Data format 
hide
 ERX6020559  HMR  Hippocampus / ERX6020559 (HMR)   Data format 
hide
 Configure
 ERX6020559  CpG methylation  Hippocampus / ERX6020559 (CpG methylation)   Data format 
hide
 ERX6020560  HMR  Hippocampus / ERX6020560 (HMR)   Data format 
hide
 Configure
 ERX6020560  CpG methylation  Hippocampus / ERX6020560 (CpG methylation)   Data format 
hide
 ERX6020561  HMR  Hippocampus / ERX6020561 (HMR)   Data format 
hide
 Configure
 ERX6020561  CpG methylation  Hippocampus / ERX6020561 (CpG methylation)   Data format 
hide
 ERX6020562  HMR  Hippocampus / ERX6020562 (HMR)   Data format 
hide
 Configure
 ERX6020562  CpG methylation  Hippocampus / ERX6020562 (CpG methylation)   Data format 
hide
 ERX6020563  HMR  Hippocampus / ERX6020563 (HMR)   Data format 
hide
 Configure
 ERX6020563  CpG methylation  Hippocampus / ERX6020563 (CpG methylation)   Data format 
hide
 ERX6020564  HMR  Hippocampus / ERX6020564 (HMR)   Data format 
hide
 Configure
 ERX6020564  CpG methylation  Hippocampus / ERX6020564 (CpG methylation)   Data format 
hide
 ERX6020565  HMR  Hippocampus / ERX6020565 (HMR)   Data format 
hide
 Configure
 ERX6020565  CpG methylation  Hippocampus / ERX6020565 (CpG methylation)   Data format 
hide
 ERX6020566  HMR  Hippocampus / ERX6020566 (HMR)   Data format 
hide
 Configure
 ERX6020566  CpG methylation  Hippocampus / ERX6020566 (CpG methylation)   Data format 
hide
 ERX6020567  HMR  Hippocampus / ERX6020567 (HMR)   Data format 
hide
 Configure
 ERX6020567  CpG methylation  Hippocampus / ERX6020567 (CpG methylation)   Data format 
hide
 ERX6020568  HMR  Hippocampus / ERX6020568 (HMR)   Data format 
hide
 Configure
 ERX6020568  CpG methylation  Hippocampus / ERX6020568 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Epigenomic rewiring of mouse hippocampus after resistance and endurance exercise training
SRA: ERP130901
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
ERX6020554 Hippocampus 0.728 23.2 58607 1072.0 2546 989.4 3356 9516.8 0.991 Illumina NovaSeq 6000 paired end sequencing
ERX6020555 Hippocampus 0.737 18.3 51186 1096.6 1710 826.7 3588 8771.7 0.991 Illumina NovaSeq 6000 paired end sequencing
ERX6020556 Hippocampus 0.732 26.9 63748 1087.4 3065 823.4 3242 10139.1 0.991 Illumina NovaSeq 6000 paired end sequencing
ERX6020557 Hippocampus 0.749 24.3 43537 1071.4 2429 993.1 3487 9915.2 0.988 Illumina NovaSeq 6000 paired end sequencing
ERX6020558 Hippocampus 0.732 21.1 52323 1075.8 2284 1012.5 2983 9628.0 0.990 Illumina NovaSeq 6000 paired end sequencing
ERX6020559 Hippocampus 0.725 19.5 41917 1070.3 1783 833.6 3181 9488.1 0.990 Illumina NovaSeq 6000 paired end sequencing
ERX6020560 Hippocampus 0.715 20.6 64523 1101.0 2087 821.1 3324 9861.9 0.994 Illumina NovaSeq 6000 paired end sequencing
ERX6020561 Hippocampus 0.714 20.6 56396 1085.6 2196 823.9 3368 9323.4 0.993 Illumina NovaSeq 6000 paired end sequencing
ERX6020562 Hippocampus 0.718 22.3 65706 1098.7 2339 1010.0 3360 10128.2 0.993 Illumina NovaSeq 6000 paired end sequencing
ERX6020563 Hippocampus 0.729 19.4 51914 1086.8 2199 1025.0 3146 9404.0 0.992 Illumina NovaSeq 6000 paired end sequencing
ERX6020564 Hippocampus 0.722 20.7 55750 1086.5 2548 823.9 3184 9917.9 0.991 Illumina NovaSeq 6000 paired end sequencing
ERX6020565 Hippocampus 0.712 21.0 68254 1114.3 2643 978.5 3191 10525.6 0.993 Illumina NovaSeq 6000 paired end sequencing
ERX6020566 Hippocampus 0.719 21.5 52255 1065.7 3346 811.6 3408 9213.9 0.989 Illumina NovaSeq 6000 paired end sequencing
ERX6020567 Hippocampus 0.712 20.1 56924 1096.1 2915 822.8 3196 9449.9 0.993 Illumina NovaSeq 6000 paired end sequencing
ERX6020568 Hippocampus 0.717 21.5 56405 1070.2 2827 827.3 3469 9062.9 0.992 Illumina NovaSeq 6000 paired end sequencing

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.