Mouse methylome studies ERP016240 Track Settings
 
Genome-wide DNA methylation landscape defines specialization of regulatory T cells in tissues [Fat_Treg_R1, LN_Tconv_R2, LN_Tconv_R3, LN_Treg_R2, LN_Treg_R3, Liver_Treg_R1, Skin_Treg_R1, Skin_Treg_R2, Skin_Treg_R3]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
ERX1589870 
ERX1589883 
ERX1624700 
ERX1624701 
ERX1624732 
ERX1624733 
ERX1624734 
ERX1624735 
ERX1624736 
ERX1624738 
ERX1624740 
ERX1624742 
ERX1624756 
ERX1624757 
ERX1624764 
ERX1624765 
ERX1624772 
ERX1624773 
ERX1624774 
ERX1624780 
ERX1624781 
ERX1624789 
experiment
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 ERX1589870  HMR  Fat_Treg_R1 / ERX1589870 (HMR)   Data format 
hide
 Configure
 ERX1589870  CpG methylation  Fat_Treg_R1 / ERX1589870 (CpG methylation)   Data format 
hide
 ERX1589883  HMR  Fat_Treg_R1 / ERX1589883 (HMR)   Data format 
hide
 Configure
 ERX1589883  CpG methylation  Fat_Treg_R1 / ERX1589883 (CpG methylation)   Data format 
hide
 ERX1624700  HMR  Liver_Treg_R1 / ERX1624700 (HMR)   Data format 
hide
 Configure
 ERX1624700  CpG methylation  Liver_Treg_R1 / ERX1624700 (CpG methylation)   Data format 
hide
 ERX1624701  HMR  Liver_Treg_R1 / ERX1624701 (HMR)   Data format 
hide
 Configure
 ERX1624701  CpG methylation  Liver_Treg_R1 / ERX1624701 (CpG methylation)   Data format 
hide
 ERX1624732  HMR  LN_Tconv_R2 / ERX1624732 (HMR)   Data format 
hide
 Configure
 ERX1624732  CpG methylation  LN_Tconv_R2 / ERX1624732 (CpG methylation)   Data format 
hide
 ERX1624733  HMR  LN_Tconv_R2 / ERX1624733 (HMR)   Data format 
hide
 Configure
 ERX1624733  CpG methylation  LN_Tconv_R2 / ERX1624733 (CpG methylation)   Data format 
hide
 ERX1624734  HMR  LN_Tconv_R2 / ERX1624734 (HMR)   Data format 
hide
 Configure
 ERX1624734  CpG methylation  LN_Tconv_R2 / ERX1624734 (CpG methylation)   Data format 
hide
 ERX1624735  HMR  LN_Tconv_R2 / ERX1624735 (HMR)   Data format 
hide
 Configure
 ERX1624735  CpG methylation  LN_Tconv_R2 / ERX1624735 (CpG methylation)   Data format 
hide
 ERX1624736  HMR  LN_Tconv_R3 / ERX1624736 (HMR)   Data format 
hide
 Configure
 ERX1624736  CpG methylation  LN_Tconv_R3 / ERX1624736 (CpG methylation)   Data format 
hide
 ERX1624738  HMR  LN_Tconv_R3 / ERX1624738 (HMR)   Data format 
hide
 Configure
 ERX1624738  CpG methylation  LN_Tconv_R3 / ERX1624738 (CpG methylation)   Data format 
hide
 ERX1624740  HMR  LN_Tconv_R3 / ERX1624740 (HMR)   Data format 
hide
 Configure
 ERX1624740  CpG methylation  LN_Tconv_R3 / ERX1624740 (CpG methylation)   Data format 
hide
 ERX1624742  HMR  LN_Tconv_R3 / ERX1624742 (HMR)   Data format 
hide
 Configure
 ERX1624742  CpG methylation  LN_Tconv_R3 / ERX1624742 (CpG methylation)   Data format 
hide
 ERX1624756  HMR  LN_Treg_R2 / ERX1624756 (HMR)   Data format 
hide
 Configure
 ERX1624756  CpG methylation  LN_Treg_R2 / ERX1624756 (CpG methylation)   Data format 
hide
 ERX1624757  HMR  LN_Treg_R2 / ERX1624757 (HMR)   Data format 
hide
 Configure
 ERX1624757  CpG methylation  LN_Treg_R2 / ERX1624757 (CpG methylation)   Data format 
hide
 ERX1624764  HMR  LN_Treg_R3 / ERX1624764 (HMR)   Data format 
hide
 Configure
 ERX1624764  CpG methylation  LN_Treg_R3 / ERX1624764 (CpG methylation)   Data format 
hide
 ERX1624765  HMR  LN_Treg_R3 / ERX1624765 (HMR)   Data format 
hide
 Configure
 ERX1624765  CpG methylation  LN_Treg_R3 / ERX1624765 (CpG methylation)   Data format 
hide
 ERX1624772  HMR  Skin_Treg_R1 / ERX1624772 (HMR)   Data format 
hide
 Configure
 ERX1624772  CpG methylation  Skin_Treg_R1 / ERX1624772 (CpG methylation)   Data format 
hide
 ERX1624773  HMR  Skin_Treg_R1 / ERX1624773 (HMR)   Data format 
hide
 Configure
 ERX1624773  CpG methylation  Skin_Treg_R1 / ERX1624773 (CpG methylation)   Data format 
hide
 ERX1624774  HMR  Skin_Treg_R1 / ERX1624774 (HMR)   Data format 
hide
 Configure
 ERX1624774  CpG methylation  Skin_Treg_R1 / ERX1624774 (CpG methylation)   Data format 
hide
 ERX1624780  HMR  Skin_Treg_R2 / ERX1624780 (HMR)   Data format 
hide
 Configure
 ERX1624780  CpG methylation  Skin_Treg_R2 / ERX1624780 (CpG methylation)   Data format 
hide
 ERX1624781  HMR  Skin_Treg_R2 / ERX1624781 (HMR)   Data format 
hide
 Configure
 ERX1624781  CpG methylation  Skin_Treg_R2 / ERX1624781 (CpG methylation)   Data format 
hide
 ERX1624789  HMR  Skin_Treg_R3 / ERX1624789 (HMR)   Data format 
hide
 Configure
 ERX1624789  CpG methylation  Skin_Treg_R3 / ERX1624789 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Genome-wide DNA methylation landscape defines specialization of regulatory T cells in tissues
SRA: ERP016240
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
ERX1589870 Fat_Treg_R1 0.738 1.5 20747 1922.9 20 1355.8 43 96949.0 0.913 Illumina HiSeq 2000 paired end sequencing
ERX1589883 Fat_Treg_R1 0.740 1.5 20937 1932.0 16 1319.2 71 76474.4 0.917 Illumina HiSeq 2000 paired end sequencing
ERX1624700 Liver_Treg_R1 0.775 1.5 23238 1813.8 11 1093.2 137 108235.0 0.914 Illumina HiSeq 2000 paired end sequencing
ERX1624701 Liver_Treg_R1 0.775 1.7 24512 1762.4 11 1393.9 184 83430.1 0.915 Illumina HiSeq 2000 paired end sequencing
ERX1624732 LN_Tconv_R2 0.803 1.6 27787 1667.1 26 1404.8 163 108726.1 0.920 Illumina HiSeq 2000 paired end sequencing
ERX1624733 LN_Tconv_R2 0.802 1.5 27438 1681.0 29 1439.5 301 102851.1 0.920 Illumina HiSeq 2000 paired end sequencing
ERX1624734 LN_Tconv_R2 0.803 1.6 28739 1639.0 22 1397.3 233 98076.6 0.921 Illumina HiSeq 2000 paired end sequencing
ERX1624735 LN_Tconv_R2 0.802 1.6 28639 1647.7 23 1440.0 171 109428.6 0.921 Illumina HiSeq 2000 paired end sequencing
ERX1624736 LN_Tconv_R3 0.807 1.5 28685 1616.5 9 1676.9 225 108009.9 0.919 Illumina HiSeq 2000 paired end sequencing
ERX1624738 LN_Tconv_R3 0.808 1.5 28413 1632.0 11 1407.0 253 112178.7 0.920 Illumina HiSeq 2000 paired end sequencing
ERX1624740 LN_Tconv_R3 0.809 1.5 28570 1629.2 11 1516.2 291 97860.5 0.920 Illumina HiSeq 2000 paired end sequencing
ERX1624742 LN_Tconv_R3 0.809 1.5 27290 1673.4 4 1873.5 255 117415.0 0.921 Illumina HiSeq 2000 paired end sequencing
ERX1624756 LN_Treg_R2 0.803 1.7 26766 1690.1 20 1272.6 244 85119.0 0.919 Illumina HiSeq 2000 paired end sequencing
ERX1624757 LN_Treg_R2 0.803 1.7 27548 1665.8 25 1294.7 253 85701.6 0.920 Illumina HiSeq 2000 paired end sequencing
ERX1624764 LN_Treg_R3 0.801 1.7 26149 1689.9 9 1499.4 267 73803.9 0.916 Illumina HiSeq 2000 paired end sequencing
ERX1624765 LN_Treg_R3 0.800 1.7 26500 1674.2 16 1121.9 208 81753.0 0.916 Illumina HiSeq 2000 paired end sequencing
ERX1624772 Skin_Treg_R1 0.712 1.6 20710 2083.7 17 1545.2 110 61883.2 0.919 Illumina HiSeq 2000 paired end sequencing
ERX1624773 Skin_Treg_R1 0.712 1.6 20256 2104.1 18 1315.8 60 81345.1 0.918 Illumina HiSeq 2000 paired end sequencing
ERX1624774 Skin_Treg_R1 0.713 1.5 20630 2084.2 15 1589.1 55 73625.1 0.920 Illumina HiSeq 2000 paired end sequencing
ERX1624780 Skin_Treg_R2 0.711 1.6 20700 2098.2 19 1322.4 53 76940.0 0.920 Illumina HiSeq 2000 paired end sequencing
ERX1624781 Skin_Treg_R2 0.711 1.6 20172 2126.7 15 1336.1 74 72624.7 0.920 Illumina HiSeq 2000 paired end sequencing
ERX1624789 Skin_Treg_R3 0.708 1.5 20756 2118.1 23 1187.7 49 78047.5 0.919 Illumina HiSeq 2000 paired end sequencing

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.