Mouse methylome studies DRP008439 Track Settings
 
The DNMT3A ADD domain recognizing histone H3K4me0 is essential for processive DNA methylation and maternal imprinting in mouse oocytes [Embryo E10.5, Oocyte, Parthenogenesis Blastocyst]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR       HMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR  HMR 
experiment
DRX313774 
DRX313775 
DRX313776 
DRX313777 
DRX313778 
DRX313779 
DRX313780 
DRX313781 
DRX313782 
DRX313783 
DRX313784 
DRX313785 
DRX313786 
DRX313787 
DRX313788 
DRX313789 
DRX313790 
DRX380822 
DRX380823 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 Configure
 DRX313774  CpG methylation  Oocyte / DRX313774 (CpG methylation)   Data format 
hide
 Configure
 DRX313775  CpG methylation  Oocyte / DRX313775 (CpG methylation)   Data format 
hide
 Configure
 DRX313776  CpG methylation  Oocyte / DRX313776 (CpG methylation)   Data format 
hide
 Configure
 DRX313777  CpG methylation  Oocyte / DRX313777 (CpG methylation)   Data format 
hide
 Configure
 DRX313778  CpG methylation  Oocyte / DRX313778 (CpG methylation)   Data format 
hide
 Configure
 DRX313779  CpG methylation  Oocyte / DRX313779 (CpG methylation)   Data format 
hide
 DRX313780  HMR  Embryo E10.5 / DRX313780 (HMR)   Data format 
hide
 Configure
 DRX313780  CpG methylation  Embryo E10.5 / DRX313780 (CpG methylation)   Data format 
hide
 DRX313781  HMR  Embryo E10.5 / DRX313781 (HMR)   Data format 
hide
 Configure
 DRX313781  CpG methylation  Embryo E10.5 / DRX313781 (CpG methylation)   Data format 
hide
 DRX313782  HMR  Embryo E10.5 / DRX313782 (HMR)   Data format 
hide
 Configure
 DRX313782  CpG methylation  Embryo E10.5 / DRX313782 (CpG methylation)   Data format 
hide
 DRX313783  HMR  Embryo E10.5 / DRX313783 (HMR)   Data format 
hide
 Configure
 DRX313783  CpG methylation  Embryo E10.5 / DRX313783 (CpG methylation)   Data format 
hide
 DRX313784  HMR  Embryo E10.5 / DRX313784 (HMR)   Data format 
hide
 Configure
 DRX313784  CpG methylation  Embryo E10.5 / DRX313784 (CpG methylation)   Data format 
hide
 Configure
 DRX313785  CpG methylation  Parthenogenesis Blastocyst / DRX313785 (CpG methylation)   Data format 
hide
 Configure
 DRX313786  CpG methylation  Parthenogenesis Blastocyst / DRX313786 (CpG methylation)   Data format 
hide
 Configure
 DRX313787  CpG methylation  Parthenogenesis Blastocyst / DRX313787 (CpG methylation)   Data format 
hide
 Configure
 DRX313788  CpG methylation  Parthenogenesis Blastocyst / DRX313788 (CpG methylation)   Data format 
hide
 Configure
 DRX313789  CpG methylation  Parthenogenesis Blastocyst / DRX313789 (CpG methylation)   Data format 
hide
 Configure
 DRX313790  CpG methylation  Parthenogenesis Blastocyst / DRX313790 (CpG methylation)   Data format 
hide
 Configure
 DRX380822  CpG methylation  Oocyte / DRX380822 (CpG methylation)   Data format 
hide
 Configure
 DRX380823  CpG methylation  Oocyte / DRX380823 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: The DNMT3A ADD domain recognizing histone H3K4me0 is essential for processive DNA methylation and maternal imprinting in mouse oocytes
SRA: DRP008439
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
DRX313774 Oocyte 0.345 6.4 39425 25239.0 404 961.5 8443 159928.5 0.958 Illumina NovaSeq 6000 sequencing of SAMD00412705
DRX313775 Oocyte 0.358 4.8 26349 31004.0 240 996.1 7212 182982.7 0.952 Illumina NovaSeq 6000 sequencing of SAMD00412706
DRX313776 Oocyte 0.331 4.0 20944 35079.6 92 1042.6 6443 200468.8 0.966 Illumina NovaSeq 6000 sequencing of SAMD00412707
DRX313777 Oocyte 0.333 4.0 21711 34735.3 65 1043.4 6380 202838.9 0.967 Illumina NovaSeq 6000 sequencing of SAMD00412708
DRX313778 Oocyte 0.175 5.1 8134 63723.8 20 922.0 6028 203617.9 0.984 Illumina NovaSeq 6000 sequencing of SAMD00412709
DRX313779 Oocyte 0.177 4.2 3885 88876.0 5 788.0 5328 223984.9 0.982 Illumina NovaSeq 6000 sequencing of SAMD00412710
DRX313780 Embryo E10.5 0.662 6.3 29483 1310.9 348 1078.1 713 18381.0 0.991 Illumina NovaSeq 6000 sequencing of SAMD00412711
DRX313781 Embryo E10.5 0.658 5.7 28369 1361.9 365 1065.9 586 21778.2 0.991 Illumina NovaSeq 6000 sequencing of SAMD00412712
DRX313782 Embryo E10.5 0.651 5.4 28917 1389.2 272 1054.4 597 23813.9 0.991 Illumina NovaSeq 6000 sequencing of SAMD00412713
DRX313783 Embryo E10.5 0.649 5.8 29293 1374.9 324 1045.8 687 21732.4 0.991 Illumina NovaSeq 6000 sequencing of SAMD00412714
DRX313784 Embryo E10.5 0.659 6.5 28167 1324.6 375 1065.4 699 19189.9 0.991 Illumina NovaSeq 6000 sequencing of SAMD00412715
DRX313785 Parthenogenesis Blastocyst 0.152 4.2 0 0.0 84 1037.3 2 105298064.5 0.978 Illumina NovaSeq 6000 sequencing of SAMD00412716
DRX313786 Parthenogenesis Blastocyst 0.185 3.3 13 355025.6 76 1060.9 2563 338671.1 0.976 Illumina NovaSeq 6000 sequencing of SAMD00412717
DRX313787 Parthenogenesis Blastocyst 0.127 3.7 0 0.0 67 1089.9 1 109675522.0 0.979 Illumina NovaSeq 6000 sequencing of SAMD00412718
DRX313788 Parthenogenesis Blastocyst 0.125 4.4 0 0.0 13 946.9 34 2327013.4 0.979 Illumina NovaSeq 6000 sequencing of SAMD00412719
DRX313789 Parthenogenesis Blastocyst 0.121 4.4 0 0.0 29 1232.9 264 1158626.7 0.978 Illumina NovaSeq 6000 sequencing of SAMD00412720
DRX313790 Parthenogenesis Blastocyst 0.101 4.5 0 0.0 14 933.4 15 3873438.1 0.978 Illumina NovaSeq 6000 sequencing of SAMD00412721
DRX380822 Oocyte 0.135 5.0 2 628078.0 43 1051.6 1726 494470.9 0.977 Illumina NovaSeq 6000 sequencing of SAMD00514933
DRX380823 Oocyte 0.126 5.1 1702 130637.8 38 1028.6 4575 262866.0 0.976 Illumina NovaSeq 6000 sequencing of SAMD00514934

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.