Mouse methylome studies DRP000638 Track Settings
 
Mouse PGC DNA methylome (PBAT) [E10.5fPGC, E10.5mPGC, E13.5fPGC, E13.5mPGC, E16.5fPGC, E16.5mPGC]

Track collection: Mouse methylome studies

+  All tracks in this collection (560)

Maximum display mode:       Reset to defaults   
Select views (Help):
PMD       CpG methylation ▾       CpG reads ▾       AMR      
Select subtracks by views and experiment:
 All views PMD  CpG methylation  CpG reads  AMR 
experiment
DRX001797 
DRX001798 
DRX001799 
DRX001801 
DRX001802 
DRX001803 
DRX001805 
DRX001806 
DRX001807 
DRX001808 
DRX001809 
DRX001811 
DRX001812 
DRX001815 
DRX001816 
DRX002684 
List subtracks: only selected/visible    all    ()
  experiment↓1 views↓2   Track Name↓3  
hide
 Configure
 DRX001797  CpG methylation  E10.5mPGC / DRX001797 (CpG methylation)   Data format 
hide
 Configure
 DRX001798  CpG methylation  E10.5mPGC / DRX001798 (CpG methylation)   Data format 
hide
 Configure
 DRX001799  CpG methylation  E10.5fPGC / DRX001799 (CpG methylation)   Data format 
hide
 Configure
 DRX001801  CpG methylation  E10.5fPGC / DRX001801 (CpG methylation)   Data format 
hide
 Configure
 DRX001802  CpG methylation  E10.5fPGC / DRX001802 (CpG methylation)   Data format 
hide
 Configure
 DRX001803  CpG methylation  E13.5mPGC / DRX001803 (CpG methylation)   Data format 
hide
 Configure
 DRX001805  CpG methylation  E13.5mPGC / DRX001805 (CpG methylation)   Data format 
hide
 Configure
 DRX001806  CpG methylation  E13.5mPGC / DRX001806 (CpG methylation)   Data format 
hide
 Configure
 DRX001807  CpG methylation  E13.5mPGC / DRX001807 (CpG methylation)   Data format 
hide
 Configure
 DRX001808  CpG methylation  E13.5fPGC / DRX001808 (CpG methylation)   Data format 
hide
 Configure
 DRX001809  CpG methylation  E13.5fPGC / DRX001809 (CpG methylation)   Data format 
hide
 Configure
 DRX001811  CpG methylation  E13.5fPGC / DRX001811 (CpG methylation)   Data format 
hide
 Configure
 DRX001812  CpG methylation  E13.5fPGC / DRX001812 (CpG methylation)   Data format 
hide
 Configure
 DRX001815  CpG methylation  E16.5mPGC / DRX001815 (CpG methylation)   Data format 
hide
 Configure
 DRX001816  CpG methylation  E16.5fPGC / DRX001816 (CpG methylation)   Data format 
hide
 Configure
 DRX002684  CpG methylation  E10.5mPGC / DRX002684 (CpG methylation)   Data format 
    
Assembly: Mouse Jun. 2020 (GRCm39/mm39)

Study title: Mouse PGC DNA methylome (PBAT)
SRA: DRP000638
GEO: not found
Pubmed: not found

Experiment Label Methylation Coverage HMRs HMR size AMRs AMR size PMDs PMD size Conversion Title
DRX001797 E10.5mPGC 0.151 2.8 2 938651.5 0 0.0 16 6329170.1 0.988 E10.5mPGC - PE2
DRX001798 E10.5mPGC 0.143 5.4 0 0.0 58 1152.0 36 3467558.3 0.986 E10.5mPGC - SR1
DRX001799 E10.5fPGC 0.135 3.7 0 0.0 23 1220.0 34 3992665.2 0.986 E10.5fPGC - SR1
DRX001801 E10.5fPGC 0.141 3.0 0 0.0 12 903.0 32 3953932.1 0.989 E10.5fPGC - PE2
DRX001802 E10.5fPGC 0.182 2.7 1 838820.0 9 1155.1 1 7018994.0 0.990 E10.5fPGC - PE3
DRX001803 E13.5mPGC 0.047 2.4 0 0.0 3 914.3 33 5101954.7 0.984 E13.5mPGC - SR1
DRX001805 E13.5mPGC 0.031 2.9 3 849270.7 1 710.0 175 1911305.9 0.991 E13.5mPGC - PE2
DRX001806 E13.5mPGC 0.031 3.1 3 817962.3 0 0.0 274 1626709.3 0.991 E13.5mPGC - PE3
DRX001807 E13.5mPGC 0.031 2.5 1 838820.0 1 612.0 147 2070176.6 0.991 E13.5mPGC - PE4
DRX001808 E13.5fPGC 0.033 4.2 4 782543.0 6 1080.7 241 1452450.2 0.984 E13.5fPGC - SR1
DRX001809 E13.5fPGC 0.037 1.7 0 0.0 5 1030.8 124 2674411.6 0.983 E13.5fPGC - SR2
DRX001811 E13.5fPGC 0.027 2.8 16 672192.4 3 715.3 414 1154846.1 0.992 E13.5fPGC - PE2
DRX001812 E13.5fPGC 0.027 2.7 22 619064.8 0 0.0 262 1330985.7 0.992 E13.5fPGC - PE3
DRX001815 E16.5mPGC 0.298 10.1 61054 7011.9 20 1303.3 2383 293054.3 0.978 E16.5mPGC - SR1
DRX001816 E16.5fPGC 0.024 10.2 3787 142567.9 21 969.3 1098 535892.9 0.985 E16.5fPGC - SR1
DRX002684 E10.5mPGC 0.189 2.4 2 855114.0 9 718.1 0 0.0 0.989 E10.5mPGC - PE3

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline DNMTools developed in the Smith lab at USC.

Mapping reads from bisulfite sequencing: Bisulfite treated reads are mapped to the genomes with the abismal program. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. This is done with cutadapt. Uniquely mapped reads with mismatches/indels below given threshold are retained. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is discarded. After mapping, we use the format command in dnmtools to merge mates for paired-end reads. We use the dnmtools uniq command to randomly select one from multiple reads mapped exactly to the same location. Without random oligos as UMIs, this is our best indication of PCR duplicates.

Estimating methylation levels: After reads are mapped and filtered, the dnmtools counts command is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (those containing a C) and the number of unmethylated reads (those containing a T) at each nucleotide in a mapped read that corresponds to a cytosine in the reference genome. The methylation level of that cytosine is estimated as the ratio of methylated to total reads covering that cytosine. For cytosines in the symmetric CpG sequence context, reads from the both strands are collapsed to give a single estimate. Very rarely do the levels differ between strands (typically only if there has been a substitution, as in a somatic mutation), and this approach gives a better estimate.

Bisulfite conversion rate: The bisulfite conversion rate for an experiment is estimated with the dnmtools bsrate command, which computes the fraction of successfully converted nucleotides in reads (those read out as Ts) among all nucleotides in the reads mapped that map over cytosines in the reference genome. This is done either using a spike-in (e.g., lambda), the mitochondrial DNA, or the nuclear genome. In the latter case, only non-CpG sites are used. While this latter approach can be impacted by non-CpG cytosine methylation, in practice it never amounts to much.

Identifying hypomethylated regions (HMRs): In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically the interesting features. (This seems to be true for essentially all healthy differentiated cell types, but not cells of very early embryogenesis, various germ cells and precursors, and placental lineage cells.) These are valleys of low methylation are called hypomethylated regions (HMR) for historical reasons. To identify the HMRs, we use the dnmtools hmr command, which uses a statistical model that accounts for both the methylation level fluctations and the varying amounts of data available at each CpG site.

Partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Allele-specific methylation: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelic is used to compute allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the DNMTools documentation.